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GABA  Glutamate and γ-aminobutyric acid 
ACh  Acetylcholine 
i.t.   Intrathecal 
MLA   Methyllycaconitine 
 DRG  Dorsal root ganglia 
PAMs   Positive allosteric modulators 
NAMs   Negative allosteric modulators 
i.v.   Intravenously 
i.c.v.  Intracerebroventricularly 
5HT3  5-hydrodytryptamine 
TMD   Trasmembrane domain 
CSF   Cerebraspinal fluid 
BTX  [125]-α-bungarotoxin 
ERK   Extracellular signal-regulated kinase 
AAALAC  Association for Assessment and Accreditation of Laboratory Animal Care 
DHβE  Dihydro-β-erythroidine 
i.p.   Intraperitoneal 
%MPE  Percent maximum possible effect 
i.pl.   Intraplantar 
BBB  Blood-brain barrier  
s.c.  Subcutaneously 
ΔPWL   Change in paw withdrawal latencies 
NF-κΒ   Nuclear factor κΒ   
cAMP   Adenosine monophosphate cyclic  
pCREB   Response element binding protein 
PKC  Protein kinase C 
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The α7 nicotinic acetylcholine receptor (nAChR) subtype is abundantly expressed in the central 
nervous system (CNS) and in the periphery. Positive allosteric modulators (PAMs) of the α7 
increase the response to an agonist and are divided into two types depending on whether they 
also decrease desensitization of the receptor (type II) or not (type I). Therefore, this study aims to 
investigate whether the enhancement of endogenous α7 nAChR function will result in a 
beneficial effect in nociceptive, inflammatory and chronic neuropathic pain models. While 
NS1738 and PNU-120596 were not active to reduce acute thermal pain, measured by hot-plate 
and tail-flick tests, only PNU-120596 dose-dependently attenuated paw-licking behavior in the 
formalin test. Our results with selective (MEK) inhibitor U0126 argues for an important role of 
extracellular signal-regulated kinase (ERK1/2) pathways activation in PNU-120596’s 
antinociceptive effects in formalin-induced pain. The α7 antagonist MLA, via intrathecal and 
intraplantar administration, reversed PNU-120596’s effects, confirming PNU-120596’s action 
through central and peripheral α7 nAChRs. Tolerance to PNU-120596 was not developed after 
chronic treatment of the drug. Furthermore, mixtures of PNU-120596 and choline, an 
endogenous α7 nAChR agonist, synergistically reduced formalin-induced pain, while 
interactions of non-antinociceptive doses of PNU-120596 and PHA-543613, a selective α7 
nAChR agonist, or nicotine resulted in antinociception. In contrast, PNU-120596 failed to 
enhance nicotine-induced convulsions, -hypomotility and –antinociception in acute pain models. 
Surprisingly, it enhanced nicotine-induced hypothermia via α7 nAChRs. In the carrageenan 
inflammatory test both NS1738 and PNU-120596 significantly reduced thermal hyperalgesia, 
while only PNU-120596 significantly reduced edema. Importantly, PNU-120596 reversed 
established thermal hyperalgesia and edema induced by carrageenan. In the chronic neuropathic 
pain (CCI) model, PNU-120596 had long-lasting (up to 6 hrs), dose-dependent anti-hyperalgesic 
and anti-allodynic effects after a single injection, while NS1738 was inactive. Subcutaneous and 
intrathecal administration of MLA reversed PNU-120596’s effects, suggesting the involvement 
of α7 nAChRs. Finally, PNU-120596 enhanced an ineffective dose of selective agonist PHA-
543613 to produce anti-allodynic effects in the CCI model. Our results show a fundamental in 
vivo difference between type I and II α7 nAChR PAMs, and demonstrate type II’s potential for 
the treatment of chronic inflammatory pain.  
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CHAPTER I 

 

1.1 Review of the Literature 

Pain, an unpleasant sensation, is one the most prominent reasons for patient visits to 

physicians.  It is a vital function of the nervous system and an alert mechanism to protect 

individuals from actual or potential bodily injury. While pain conditions and their treatments 

vary, the management of chronic pain represents a significant public health issue in the United 

States. Estimates of its prevalence on population-based surveys vary widely, from 14.6 to 64% 

(Hardt et al., 2008; Portenoy et al., 2004 and Watkins et al., 2008). By definition, chronic pain is 

pain that has lasted for a long time (Zhuo, 2007). While the distinction between acute and 

chronic pain has traditionally been determined by an arbitrary interval of time since onset, most 

researchers and clinicians used 3 months and 6 months since onset as the most commonly used 

markers. Characterized by the constant firing of pain signals in the nervous system, chronic pain 

can last up to years. These prolonged episodes of pain signaling can be due to an initial infliction 

that has resulted in a long-term lesion or an ongoing infliction that causes acute or chronic 

lesions. For example, long-term health conditions such as cancer, arthritis, peripheral or central 

nerve damage and psychological disorders all cause chronic pain conditions. Other common 

chronic pain conditions include headaches and low back pain. Chronic pain conditions may also 

occur simultaneously as seen in interstitial cystitis, vulvodynia, fibromyalgia, and endometriosis 

(“National institute of ”, 2012). Chronic pain, which is composed of nociceptive, inflammatory 

and neuropathic components (Blackburn-Munro, 2004), differs from acute pain in its onset and 

duration, and by corollary, in its underlying biological mechanisms (Attal & Bouhassira, 1999). 

Currently employed analgesics are in general less effective in treating chronic pain than in 

treating acute pain (Wang and Wang, 2003), making the management of chronic pain costly to 
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the health care system and distressing to the patient. While chronic pain conditions differ, 

chronic neuropathic pain usually is defined as pain initiated by primary lesion or dysfunction in 

the nervous system (Harden, 2005). It is characterized by spontaneous pain, such as lancinating, 

burning, or cramping, among others, and evoked pain, such as allodynia and hyperalgesia (Serra, 

1999). Hyperalgesia refers to the exaggeration of pain response produced by a normally painful 

stimulus, while allodynia is pain produced by normally innocuous stimuli (Calmels et al., 2009; 

Vranken, 2009).  

1.2 Pain Modalities  

There are three commonly described etiologies of pain: nociception, inflammation, and 

neuropathy.  

Nociceptive pain is a response triggered by an unpleasant or potentially damaging 

stimulus activated through nociceptive primary afferents fibers, which generally have higher 

thresholds than the sensory afferents that signal innocuous touch or temperature information 

(Walker et al., 1999). This can be acute (such as acute postoperative pain) (Serra et al., 1999 and 

Woolf et al., 1999) or chronic (such as the inflammation of arthritis). 

Inflammatory pain is precipitated by an insult to the integrity of tissues at a cellular level 

and is mediated by a multitude of reactive cytokines. These chemical signals can directly affect 

nociceptors or may sensitize them to touch or movement, even some distance from the 

inflammatory field. In this way one inflammatory mediator may sensitize distant pain receptors 

for another inflammatory mediator (Feghali and Timothy, 1997). The local inflammatory 

response is characterized by the active macrophagic release of proinflammatory cytokines, 
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including IL-10, IFN-γ and tumor necrosis factor-α (TNF-α), which play a crucial role in 

triggering the local inflammatory response (Baumann and Gauldie, 1994; Tracey, 2002).  

Neuropathic pain is caused by a clinically diverse group of disorders that originate from primary 

peripheral nerve lesions and/or from a dysfunction in the CNS, often without pain producing stimuli 

(Harden, 2005).  

While acute pain has been effectively managed with opioid and nonsteroidal anti-

inflammatory analgesics agents, chronic neuropathic pain associated with inflammation and 

nerve injury often do not responds well to these or any other drugs (Karlsten & Gordh, 1997; 

Mannion & Woolf, 2000; Arner & Meyerson, 1988). However, several recent studies have 

identified the potential use of nicotinic agents for analgesia. Therefore, research that seeks to 

improve the mechanistic understanding of nicotinic system in the context of chronic pain 

treatment is both essential and promising for the advancement of clinical chronic pain therapies. 

1.3 Animal Models of Pain and Inflammation  

Over the past several decades, the mechanisms of nociception and analgesia have been 

studied clinically and in animal models, namely via biochemical, pharmacological, 

electrophysiological and behavioral apparatus (Aceto et al., 1986; Mattila et al., 1968). Thus, the 

use of animal models has been integral in further understanding and identifying other agents and 

mechanisms with which produce analgesic effects. It has been shown that similar brain structures 

are involved in the process of nociceptive behaviors in humans and animals (Chang & Shyu 

2001), therefore animal models can serve as useful systems with which to study pain. Given the 

need for novel analgesic agents with superior efficacy, the use of animal models to identify and 



www.manaraa.com

	
   4	
  

validate novel molecular targets and approaches for managing pain, across its different 

modalities, remain a primary focus. 

Progress in pain research has been aided by the development of various animal models 

that mimic the different modalities of pain. Animal models of nociception should ideally display 

specificity, sensitivity, validity, reliability, and reproducibility (Le Bars et al., 2001). Of the 

several models that have been developed to meet these standards, the application of an acute 

thermal radiation to the tail in the tail-flick test, the application of heat to the paw in the hot plate 

test, the injection of formalin, the injection of carrageenan and chronic constriction injury are 

among the most traditionally and well described models. Each of them has its limitations, 

therefore the interpretation of results from these test must be carefully done. We choose these 

models based on several criteria. First, these models are amendable for use in mice. This is 

important because genetically modified nicotinic receptors are only available in mice. Secondly, 

we used different modalities of pain, such as acute nociceptive, inflammatory and neuropathic 

pain. Finally, we chose to use these models because they are well described and used 

traditionally to explore novel drugs. 

1.3.1 Acute Thermal Pain Tests  

1.3.1.1 Hot-Plate Test 

Usually employing a metallic, heated plate at [52-55oC], the hot plate test measures the 

latency time until paw-licking, which is one of two consistent supra-spinally-associated 

behaviors in this test in mice; the other is jumping. One major advantage to the hot-plate test is 

that its specificity and sensitivity can be altered by choosing which of the two behaviors to 

measure and by changing the temperature, respectively. Notably, the hot plate test is susceptible 
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to learning after repeated stimulation and it can be altered by drug that change locomotor activity 

of the mice (Le Bars et al., 2001). 

1.3.1.2 Tail-Flick Test 

Originally developed for use on human subjects (Hardy et al, 1940), the tail-flick test 

involves the application of thermal radiation to the tail radiant heat or using emerging of the tail 

of an animal, (Le Bars et al., 2001) thus provoking tail-withdrawal by a quick, strong movement 

some time after heat application referred to as tail-flick latency. Though the tail-flick is a spinal 

reflex, it may not always be purely spinal, since it is subject to control by supraspinal structures. 

Notably, a weakness of the tail-flick test is that it is subject to habituation after repeated 

stimulation (Le Bars et al., 2001). However this test has been traditionally used with opiates and 

is widely used in testing new drugs (Martin et al., 1999).  

1.3.2 Acute Mechanical Pain Test 

In animal models of neuropathic pain, mechanical allodynia and sensitivity have most 

commonly been tested using von Frey filaments, which has been shown to be reliable and valid 

and humans and in animals (Schmidt et al., 1995). Also called Semmes-Weinstein 

monofilaments, von Frey consists of 20 carrier-mounted Nylon monofilaments of about 40 mm 

lengths and diameters of 0.064-1.143 mm. The filaments are rated for their degree of applied 

force (in terms of ten times the 10-base logarithm of this force). Conceptually, von Frey 

filaments utilize calibrated and graduated forces to a sensory field (Lambert et al., 2009). There 

are two applications of the von Frey filaments test, up-down and ascending order (Detloff et al., 

2010). Von Frey filaments may largely test cutaneous sensibility and not sensitization produced 

by deeper tissues (Brennan et al., 1996). We choose the up-down method because studies have 
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shown that in neuropathic rats the up-down paradigm displayed high reproducibility (Chaplan et 

al., 1994). 

1.3.3 Persistent Pain Model  

The formalin test for nociception, which is predominantly used with rodents, validly and 

reliably, induces moderate continuous pain (1 – 2 hr nociceptive behavior) generated by lesioned 

tissue (Dubuisson & Dennis 1977; Franklin & Abbott, 1989; Tjolsen et al., 1992). In this way it 

differs form acute tests of nociception, which rely upon brief stimuli of thresholds intensity. The 

response to formalin is biphasic, consisting of early and late phases. The early phase is caused 

caused predominantly by C-fiber activation due to the peripheral stimulus, while late phase 

appears to be dependent on the combination of an inflammatory reaction in the peripheral tissue 

and function changes in the dorsal horn of the spinal cord.  

1.3.4 Inflammatory Pain Model 

There are three commonly used models of intraplantar injection-induced inflammatory 

pain – lipopolysaccharides (LPS), Complete Freund’s Adjuvant (CFA) and carrageenan. LPS is a 

gram negative bacteria cell wall constituent that has been found to induce long-lasting 

hyperalgesia (Qanaan et al., 1996). CFA is composed of inactivated and dried mycobacteria (Ren 

& Dubner, 1996). The CFA injection produces an intense inflammation after each behavior and 

hyperalgesia develops 3 to 4 h after injection, peaks at 6 to 24 h and lasts for more than 5 days 

(Ren & Dubner, 1993). Carrageenan is a polysaccharide that is extracted from red seaweed. 

There are three main commercial classes of carrageenan – kappa, iota and lambda, which defer 

in their constituent chemical group positions (Thomson & Fowler, 1981). The carrageenan model 

can be used as a method to assess short-duration (1 – 3 days) inflammatory pain. The 
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inflammatory response has been shown to last up to 6 to 8 h after injection and increases in its 

duration with the dose (Morisseau et al., 2010; Hroach & Sufka, 2003). While various model of 

inflammation are described we decided on the carrageenan test. An intraplantar injection of 

carrageenan stimulates local inflammation, inducing edema of the paw tissues (Huang et al., 

2012). It also induces inflammation associated with mechanical allodynia and c-fos-protein-like 

immunoreactivity in the ipsilateral dorsal horn of the spinal cord (Winter et al., 1962; Kocher et 

al., 1987; Kayser et al., 1987). This model provides rapid assessment of a compound’s ability to 

provide anti-inflammatory and analgesic activity. Agents that show activity in this assay include 

NSAIDs, glucocorticoids and cox inhibitors.  

1.3.5 Neuropathic Pain Model  

There are three commonly used models of chronic neuropathic pain – the partial sciatic 

nerve ligation model (PSL), spinal nerve ligation model (SNL), and the chronic constriction 

injury (CCI). For all three, allodynia and hyperalgesia develops quickly after ligation and lasts 

for more than two months, though SNL requires the most extensive surgical procedure of the 

three. CCI is reported to be the most seemingly frequently used model, and it has been validated 

by being shown to induce both thermal hyperalgesia and mechanical allodynia for at least seven 

weeks post-surgery (Vry et al., 2004). It is important to note that in CCI, an inflammatory action 

develops after a loss of most A-fibers and some C-fibers. This inflammatory component is 

interesting for us because of the α7 nAChR is associated with the cholinergic anti-inflammatory 

pathway in the termination of the parasympathetic nervous system (Xiong et al., 2010). 

Moreover, in the CCI model, we measured allodynia and thermal hyperalgesia (Bridges et al., 

2001).  
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1.4 Available treatments and challenges 

Despite a growing understanding of and an increasingly effective treatment for chronic 

pain conditions, these conditions are still poorly managed clinically. At present, opiate analgesics 

remain the standard of treatment for the majority of chronic pain conditions, however issues 

relating to tolerance, physical and psychological and dependence and side effects such as 

respiratory depression, constipation and nausea, are characteristic of this drug class. Pain relief 

for patients with inflammatory disorders through the use of non-steroidal anti-inflammatory 

drugs (NSAIDs), such as celecoxib, has had moderate success (Tramer et al., 1998; Flower, 

2003). While gastrointestinal adverse effects have traditionally been considered the most 

common and worrisome complications, the risk of cardiovascular complications have 

increasingly gained attention in the last decade. Finally, drugs that stabilize or moderate CNS 

function, such as drugs prescribed for seizures and depression may treat chronic neuropathic pain 

more effectively (Karlsten & Gordh, 1997; Mannion & Woolf, 2000). In recent times, chronic 

neuropathic pain, which often includes inflammatory and nociceptive aspects (Attal, 1999), is 

symptomatically treated with anticonvulsants and antidepressants such as gabapentin and 

amitriptyline (Lee et al.,2011). The drawback of these drugs is their adverse side effect profile 

(sedation, abnormalities of blood or platelet counts; anti-cholinergic side effects). 

While the current treatments offer some relief, adverse effects and low efficacy are still 

the major drawbacks for the treatment of chronic neuropathic pain conditions. Therefore, the 

improvement of chronic neuropathic pain will require a better understanding of the mechanisms 

underlying this condition and of the cause-and-effect factors to test the pharmacological agents 

that address this issue. 
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1.5 Nicotinic Acetylcholine Receptors 

Nicotinic acetylcholine receptors (nAChRs) are known to play a significant role in pain 

transmission. This was first evidenced by reports from animal studies that found nicotine and 

epibatidine (nonselective nicotinic agonists) to be effective and potent antinociceptive drugs in 

acute and chronic pain models (Damaj et al., 1998 and Tripathi et al., 1982).  

However, the use of these nonselective nicotinic receptor agonists is limited by side 

effects and challenges, including hypothermia, motor impairments and lack of therapeutic 

window (Bannon et al., 1995; Kesingland et al., 2000 and Rowbotham et al., 2009). For 

example, the antinociceptive dose of epibatidine nearly caused seizure in rodents (Sullivan et al., 

1994). The significant toxic effects of epibatidine were due to its non-selective actions on a 

broad range of nAChR subtypes, in particular those localized to peripheral ganglionic junctions. 

Therefore, in order to develop safe and effective analgesic nicotinic agonists, selective ligands 

for nAChR subtypes that are implicated in modulating nociceptive transmission are required. 

Pain transmission studies have largely implicated two nicotinic receptor subtypes in the 

past decade: α4β2* and α7. Due to its abundance in the central nervous system (CNS), the most 

commonly researched nAChR subtypes is the α4β2* receptor. Appreciation of the involvement 

of this receptor in pain has come from selective agonist and antagonist studies as well as the use 

of genetic knockouts in animals and antisense RNA (Bitner et al., 1998; Decker et al., 2004; 

Marubio et al., 1999; Jackson et al., 2010). However, another major subtype also with evidence 

suggesting a role in mediating nicotinic antinociception is the α7-homomer nicotinic subtype.  
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1.5.1 Subunit Composition, Stoichiometry and Distribution 

The specific pharmacological response, such as affinity and efficacy of nicotinic agonists, 

calcium permeability and rate of receptor desensitization (Gotti and Clementi, 2004; Gerzanich 

et al., 1998; Boorman et al., 2003) evoked by a nAChR agonist is governed by the anatomical 

distribution and expression of each receptor subtype and by the stoichiometry of subunits 

comprising each subtype.  

nAChRs are pentameric structures composed of five different subunits that form a central 

ion-conducting pore, allowing the permeability of cations, such as sodium, potassium, and 

calcium.  As nicotine binds to the ligand-gated ion channels it causes different conformational 

states in the nAChR: activation (open) and subsequent desensitization (closed and incapable of 

re-activation), then a basal resting state (closed and capable of activation). nAChRs are present in 

both the peripheral nervous system (PNS) (at the skeletal neuromuscular junction and in the 

autonomic nervous system) and the CNS. The neuromuscular nAChR is composed of α, β, γ, δ, 

and ε subunits, whereas the neuronal nAChR is composed of subunits α2-α10 and β2-β4. 

Indeed, neuronal nAChRs expressed in the CNS mediate fast synaptic transmission and regulate 

processes such as neurotransmitter release, synaptic plasticity and neuronal network integration 

by providing modulatory input to a variety of other neurotransmitter systems.  

nAChRs have distinct homomeric or heteromeric subunit compositions.  Consequently, 

each subunit composition may have different functional properties that result in various 

physiological and pharmacological effects (Millar and Gotti., 2009).  Homomeric nAChRs are 

made up of α7, α8 or α9 subunits, while heteromeric nAChRs comprise various combinations of 

α2-α6 with β2-β4 or α9 with α10 subunits (McGehee., 1999 and Dani et al., 2001). The α5 and 
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β3 subunits are believed to be modulatory since they do not form functional receptors when 

expressed alone or when expressed as a single α or β subunit in heteromeric channels. On the 

other hand, both of these subunits alter agonist affinity, calcium permeability and desensitization 

when expressed with other functional channels (Gerzanich et al., 1998; Boorman et al., 2003). 

Typically, activation of brain nAChRs results in an enhanced release of various 

neurotransmitters, including dopamine, serotonin, glutamate and γ-aminobutyric acid (GABA).  

The two most abundant nAChRs in the CNS can be differentiated by their relative 

affinities for nicotine and α-bungarotoxin. nAChRs with high affinity for nicotine but low 

affinity for α-bungarotoxin largely contain combinations of α4 and β2 subunits, while nAChRs 

with low affinity for nicotine but high affinity for α-bungarotoxin are mainly α7-containing. 

α3β4 subunits are less abundant in the CNS being widespread in the autonomic nervous system 

as well as responsible for several of the nicotine adverse effects (Lee et al., 2011). One of the 

major problems to the progress of specifically targeted nicotinic agonists is a need of knowledge 

concerning the exact subunit composition of native nicotinic receptors. It has been revealed that 

nAChRs are implicated in a variety of physiological functions such as modulating 

neurotransmission, cognition, development, anxiety and nociception (Cordero-Erausquin et al., 

2000; Lloyd & Williams, 2000).  

1.5.2 Nicotinic Receptors in Nociceptive Systems 

The presence of nAChRs appears to not be homogeneous across pain conduction 

pathways (Khan et al., 2003). Nicotinic receptors are found on primary afferents (Genzen & 

McGehee, 2003; Li et al.,1998) and spinal dorsal horn (Cordero-Eraudquin et al., 2004). 

Previous studies suggest that primary afferent C-fibers express α4β2* and α7* nAChRs (where 

asterisks indicate additional subunits). These receptors are probably responsible for nociceptive 
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responses while α3β4* may be responsible for antinociceptive properties (Khan et al., 2001; 

Rueter et al., 2000). Notably, nociceptive and antinociceptive responses can be attributed to 

different nAChR subtypes (Rueter et al., 2000). Furthermore, nAChRs are broadly expressed in 

the rat spinal cord, modulating innocuous and nociceptive transmission (Young et al., 2008).  

The spinal dorsal horn is the initial location in the CNS where somatosensory input is 

received, integrated and transmitted. Multiple subtypes of nAChRs are expressed in the spinal 

dorsal horn, with a predominance of α4β2* and α7 subtypes (Cordero-Eraudquin et al., 2004; 

Changeux et al., 2004). The receptor subtypes that mediate central antinociceptive action of 

nicotine are largely unknown. The α4β2 and α7 subunits are strong candidates for central 

antinociceptive mediation because of their distribution and abundance in neuronal pathways 

(Gillberg and Aquilonius, 1985; Khan et al., 1994; Marks et al., 1992; Seguela et al., 1993; Wada 

et al., 1989).  In the dorsal horn the majority of inhibitory GABAergic and/or glycinergic 

interneurons preferentially express α4, α6 and β2 subunits whereas excitatory neurons mainly 

express α7, α3 and β2 subunits (Cordero-Erausquin et al., 2004). However, Cordero-Erausquin & 

Changeux (2001) have shown that endogenous acetylcholine (ACh) may tonically activate the 

nAChRs present on inhibitory interneurons in the dorsal horn.  

The spinal cholinergic system has been indicated to modulate sensory inputs from the 

periphery (Khan et al., 1994) and are found to be expressed on both inhibitory and excitatory 

interneurons in the spinal dorsal horn (Cordero-Erausquin et al., 2004). The activation of 

presynaptic nAChRs facilitates GABAergic and glycinergic inhibitory synaptic transmission in 

the superficial dorsal horn (Kiyosawa et al., 2001; Genzen & McGehhee, 2005). nAChRs have 

also been shown to exert tonic control on descending inhibitory noradrenergic (Li et al., 2000) 

and serotonergic  transmission (Cordero-Erausquin & Changeux., 2001). Previous studies have 
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demonstrated that the administration of nicotinic agonists results in enhanced neurotransmission 

in the dorsal horn of the spinal cord (Genzen & McGehee, 2005; Takeda et al., 2003; Rashid et 

al., 2006). Furthermore, other studies have shown that partial sciatic nerve injury in the mouse 

results in an increased spinal antinociceptive potency of nicotinic agonists and loss of cholinergic 

stimulated GABAergic inhibitory tone at α4β2 nAChRs (Rashid & Ueda, 2002; Rashid et al., 

2006). Even though the effect of exogenous cholinomimetic drugs, such as nicotine and 

epibatidine, on nociceptive transmission in the spinal cord has been studied (Cordero-Erausquin 

& Changeux 2001, 2004; Rashid et al., 2006), the role of endogenous ACh in nociceptive 

processing continues to be vague. Some have proposed that ACh contributes to the analgesic 

action of opioids and of the α2-adrenoceptor agonist clonidine, which also has intrinsic analgesic 

properties (Chen & Pan, 2001; Hood et al., 1997; Pan & Chen, 1999). In a previous study Rashid 

& Ueda (2002) demonstrated that intrathecal (i.t.) injections of mecamylamine, a nicotinic 

antagonist produces thermal hyperalgesia in sham-operated mice, suggesting the presence of a 

tonic inhibitory mechanism through nicotinic receptors in the spinal cord. The exploitation of α7 

nAChRs’ role in inhibiting nociceptive pathways may be an important way by which to manage 

pain in animal models. 

1.5.3 α7 Nicotinic Receptors in Pain Pathways  

The nAChR α7 homopentameric structure is characterized by its high calcium 

permeability, the blockade by selective antagonists such as α-bungarotoxin and 

methyllycaconitine (MLA), and the rapid desensitization after agonist stimulation (Feuerbach et 

al., 2008). The α7 nAChR has a high permeability to calcium, especially when compared to other 

nAChRs and NMDA receptors (Seguela et al., 1993; Castro & Albuquerque, 1995). Williams et 

al. (2011) points out that there are several essential characteristics for the α7 subtype that 
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differentiate it from the heteromeric nAChRs, specifically citing higher energy barriers for 

entering the open state and the low open state stability, a unique desensitized state, and a 

relatively small energy difference between the resting and desensitized states. It has been 

demonstrated that the nAChR can change conformation from the desensitized to the resting state 

without passing through the active state. For example, upon desensitization, α7 nAChRs do not 

convert to a state with high affinity for ACh. Once ACh has been removed or metabolized, the 

receptor rapidly desensitizes and can be activated again by ACh (Papke et al., 2009). However 

α7 nAChRs do not readily return to a functional state after the application of nicotine or the α7 

agonist anabaseine (Papke et al., 2000). Furthermore, brief applications of endogenous α7 

agonist choline, at high concentrations, can transiently activate α7 subtypes, lower steady-state 

concentrations induce predesensitization and down-regulate response to ACh (Papke et al., 

2009).  

In the CNS, α7 nAChRs are expressed in the cortex, hippocampus, lateral geniculate 

nucleus, superior colliculus, striatum and the dorsal horn of the spinal cord. Supporting this, 

Stephen et al. (2008) showed for the first time that a selective α7-nAChR agonist had the ability 

to raise CFA-induced paw withdrawal thresholds and increase weight bearing in both rat and 

mouse through a primarily central mechanism. At the cellular cellular level we find α7 nAChR 

are both present pre- and post- synaptically on GABA glutamate and cholinergic-neurons as well 

as on astrocytes and neuroglia (Feuerbach et al., 2008). Interestingly, animal models of 

inflammatory and chronic neuropathic pain demonstrate a host of changes in protein expression 

and function in the nociceptive pathway, such as the upregulation of the α7 subunit in the dorsal 

root ganglia (DRG) (Xiao et al., 2002).  
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In vitro, nicotine is neuroprotective against glutamate-induced toxicity via α7 nAChRs 

(Gahring et al., 2003). This effect is mediated by the activation of both α4β2 and α7 nAChRs 

(Kaneko et al., 1889; Hejmadi et al., 2003). Previous studies have shown that the release of 

glutamate in the spinal cord following peripheral nerve injury and the subsequent loss of spinal 

cord neurons are believed to be key mediators in the development of chronic pain (Whiteside & 

Munglani, 2001). Therefore, the α7 nAChR subtype appears to be a potential target for pain 

mediation.  

1.5.4 α7 Nicotinic Receptors in the Cholinergic Anti-Inflammatory System 

Recent evidence has suggested that the cholinergic anti-inflammatory pathway regulates 

the immune system. This neurophysiological mechanism reduces inflammation by decreasing 

cytokine synthesis via release of ACh in organs of the reticulo-endothelial system, such as the 

lungs, spleen, liver, kidneys and gastrointestinal tract (Bencherif et al., 2011). Cholinergic action 

can control the immune system via the vagus nerve; this central mechanism is dependent on the 

α7 nAChR subtype (Tracey Kj, 2007; Rosas-Ballina & Tracey Kj, 2009; Wang et al., 2003). 

Both muscarinic and nicotinic cholinergic receptors such as α7 nAChRs, are expressed on T 

cells, macrophages and other immune cells which are capable of producing ACh. B and T cells 

are regulated by ACh via different cholinergic receptors (Fujii et al., 2008; Kawashima and Fujii, 

2003). Previous studies have demonstrated the importance of ACh in down regulating 

proinflammatory cytokine synthesis and preventing tissue damage by directly interacting with α7 

nAChRs expressed on macrophages and other cytokine-producing cells (Tracey, 2002; Wang et 

al., 2009). α7 nAChRs are present on immune and non-immune cytokine-producing cells, 

including macrophages and keratinocytes (Wang et al., 2003; Pavlov and Tracey, 2004). The 

modulation of inflammation by macrophagic α7 nAChRs (Wang et al., 2003) is mediated by 
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ACh through the vagus nerve, which acts on α7 nAChRs on macrophages to suppress the release 

of TNF-α and other proinflammatory cytokines (De Simone et al., 2005; van Weterloo, 2010). 

Indeed, this anti-inflammatory effect reflects the actions of endogenously released ACh on α7 

subtypes. 

Watkins et al (2001) have identified the role of pro-inflammatory cytokines in the 

development and maintenance of chronic pain conditions. Macrophages present in the periphery 

release the pro-inflammatory cytokines IL-B and TNF-α, which contribute to behavioral 

hypersensitivity following peripheral nerve injury (Bendszus & Stoll, 2003; Mueller et al., 2003). 

Shytle et al (2004) demonstrated that nicotine pretreatment of cultured microglial cells inhibited 

LPS-induced TNF-α release via α7 nAChRs. The maintenance of chronic pain is regulated by 

macrophages, spinal microglia and astrocytes, which produce pro-inflammatory cytokines. 

Additional studies with α7 subunit knockout mice reveal a critical role for the α7 nAChRs as a 

peripheral component of this cholinergic anti-inflammatory system (Wang et al., 2003). The 

efficacy of α7 nicotinic agonists in the setting of inflammation could be a result of modulation of 

the release of cytokines by local macrophages. For example, choline reduces TNF release from 

macrophages by activating the α7 nAChR (Wang et al., 2003). Furthermore, in chronic 

inflammation there is evidence of the efficacy of cholinergic modulation of microglial activation 

by α7 nAChRs (Shytle et al., 2004). Thus, both directly, through the pain pathway, and 

indirectly, through the cholinergic anti-inflammatory pathway, the α7 nAChR presents itself as a 

feasible target for pain modulation. 
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1.6 Positive and Negative Allosteric Modulation of nAChRs 

Modulation of nAChR function has been achieved by a variety of pharmacological 

mediators termed allosteric modulators. An alternative approach to enhance α7 nAChR function 

is by augmenting effects of the neurotransmitter ACh via positive allosteric modulation that can 

reinforce the endogenous cholinergic neurotransmission without directly activating α7 nAChRs. 

These bind to protein regions other than the active, or orthostatic, site, such as the allosteric site. 

Allosteric sites are distinct from orthosteric sites and can be localized elsewhere on the protein. 

Binding of an agonist ligand at the orthosteric site stabilizes the protein in the active state, while 

binding of a modulator molecule at an allosteric site allosterically modulates the shape of the 

protein. The protein transition state might be affected by the binding of an allosteric ligand 

resulting in a displacement of the equilibrium between states. Modulator molecules that are able 

to lower the energy barrier between the resting and active states enhancing the agonist-evoked 

response are referred as positive allosteric modulators (PAMs). In contrast, modulator molecules 

that increase this energy barrier will cause a decrease of the agonist response and are referred to 

as negative allosteric modulators (NAMs) (Bertrand & Gapalakrishnan, 2007). Positive and 

negative allosteric modulators are able to activate or inhibit a pharmacological effect through a 

receptor-mediated response (Faghih et al., 2007; Davey et al., 2012). 

PAMs are compounds that facilitate endogenous neurotransmission and/or enhance the 

efficacy and potency of agonists without directly stimulating the agonist binding sites. In 

addition, a PAM alone, in principle, does not exhibit intrinsic activity at the receptor, however it 

can amplify the effects of an agonist; these characteristics were first identified in ligand-gated 

ion channel receptors, including nAChRs (Alkondon et al., 1997; Faghih et al., 2007). A small 
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number of such compounds have been characterized in vivo. Benzodiazepine, a psychoactive 

compound, is an example of a PAM approach to enhance GABAa receptor channel activity and 

has been shown to be clinically successful (Hevers & Luddens, 1998).  

ACh is a neurotransmitter in both the PNS and the CNS. In the PNS, ACh activates 

muscles, and is a major neurotransmitter in the autonomic nervous system. In the CNS, ACh 

structures the cholinergic system, which tends to cause inhibitory actions. ACh is produced by 

the enzyme choline acetyltransferase from the compounds choline and acetyl-CoA. The enzyme 

acetylcholinesterase converts ACh into the metabolites choline and acetate. Choline is a naturally 

occurring endogenous nucleoside used in the synthesis of the constructional components in the 

body's cell membranes, an essential nutrient for the normal function of the cells (Aslan et al., 

2011), and precursor for the synthesis of the cholinergic neurotransmitter ACh. Furthermore, 

choline is a selective natural ligand for α7 nAChR and its therapeutic significance is limited 

because of its low potency (EC50 ~0.5-1.6mM) in neurons cultured from the rat hippocampus, 

olfactory bulb and thalamus as well as in PC12 cells (Alkondon et al., 1997; Papke & Porter 

Papke, 2002). Exogenous choline has been known to exhibit antinociceptive effects in various 

animals models of pain when administrated i.t., intravenously (i.v.), intracerebroventricularly 

(i.c.v.) or systemically (Damaj et al., 2000; Wang et al., 2005; Rowley et al., 2010). Earlier 

studies, in mice, show that choline, coadministered with aspirin, significantly decreases late-

phase licking/biting times in the formalin test at doses that produce no effects on this response 

when either drug is administered alone (Wang et al., 2005). Choline also significantly increases 

morphine antinociception during the late phase of the formalin test (Wang et al., 2005). The 

effect of choline on anti-inflammatory pain was blocked by the selective α7 antagonist MLA but 
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not by macamylamine, naloxone or atropine, suggesting that choline’s anti-inflammatory effects 

were α7 receptor-mediated (Wang et al., 2005).  

1.6.1 Advantages of Using Positive Allosteric Modulators 

A potential advantage in using PAMs, rather than direct agonists, is selectivity, since 

PAM binding sites are likely different from agonist/competitive antagonist binding sites. As a 

result, the determination of PAM selectivity is important to avoid potential non-α7 nAChR 

interactions (Gronlien et al., 2007). Allosteric modulators usually have low intrinsic activity 

although they provide selective potentiation or inhibition of physiological activity, lacking direct 

interruption of the ongoing signaling processes (Taly et al., 2009). One potential effect would be 

to enhance agonist-binding to the resting state of the receptor, increasing potency. This was 

proposed to be the mechanism for benzodiazepine enhancement of GABAa receptor function 

(Doble 1999). 

The α7 nAChR is both activated and desensitized by agonists in a concentration-

dependent manner, and they can become desensitized at agonist concentrations lower than those 

required to substantially activate the receptor (Quick & Lester, 2002). Thus, under conditions of 

chronic treatment, α7 nAChR agonists may have a relatively narrow effective concentration, 

supporting the use of PMAs, which can be effective at a wide range of concentrations 

(Christopoulos, 2002). Several explanations may account for this narrow effective concentration 

of α7 nAChR agonists. First, long-term drug exposure could lead to tolerance to analgesic effects 

and to prolonged receptor desensitization after agonist-binding (Papke et al., 2000; 

Christopoulos, 2002). For example, Gao et al (2010) found no analgesic efficacy with agonists 

selective for α7 in formalin-evoked paw flinching. Second, Christensen et al (2010) points out 
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that chronic exposure to α7 agonists induced an upregulation of α7 nAChRs in the brain leading 

to coupling and uncoupling in specific intracellular signaling pathways. Third, the development 

of α7 nAChR selective agonists is further hindered by a high structural homology between α7 

and 5-hydroxytryptamine (5HT3) receptors (Eisele et al., 1993; Gao et al., 2010). Finally, most of 

the α7 agonists, such as SSR18711, AZD-0328, S24795, SEN-12333, and JN-403, show partial 

agonist activity (i.e., maximum efficacy <75% versus ACh) and/or relatively weak potency 

(Ding et al., 2012; Sydserff et al., 2009). 

Another significant benefit of PAMs is that only receptors activated by the endogenous 

ligand are subject to modulation. Consequently, the physiological characteristics of endogenous 

receptor activation are conserved, and the function of the modulator can be measured as 

increasing the gain of individual receptor activation events. Agonists, on the contrary, tonically 

activate all receptors, leading to non-physiological patterns of receptor activation that could be 

detrimental to corresponding systems. Thus, using PAMs as an alternate agent through which to 

activate nAChRs could serve as a way to elicit unique, favorable enhancements of physiological 

responses, such as pain attenuation.  

1.7 Allosteric Modulation of α7 nAChRs 

A number of chemically diverse PAMs have been recognized and largely classified at 

least into two groups based on several distinctive qualities, such as differential effects on ionic 

current responses and reactivation of desensitized α7 nAChRs (Gronlien et al., 2007). PAMs 

have been classified as either type I, such as NS1738, or type II, such as PNU-120596, on the 

basis of their different effects on desensitization (Bertrand & Gopalakrishnan, 2007; 

Timmermann et al., 2007; Collins et al., 2011). The primary difference between these two types 
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is in their ability to evoke a response at the receptor level. The PAMs classified as type I 

predominantly affects the apparent peak current with little effect on desensitization kinetics 

whereas type II increases the apparent peak current and evoke a distinct weakly decaying current 

(Hurst et al., 2005). Timmermann et al (2007) reported that NS1738 enhances the potency of 

ACh as well as its maximal efficacy.  Interestingly, a separate study shows that NS1738 and 

PNU-120596 are aromatically-linked urea compounds and that both of them interact 

competitively at a common transmembrane (TM) site (Collins et al., 2011). Usually, the α7 

transmembrane region is the site of action for a variety of allosteric modulators, however there is 

strong evidence that allosteric modulators can interact with sites on the nAChR extracellular N-

terminal domain such as galantamine (Collins et al., 2011), and selective α7 PAMs. 

The PAM PNU-120596 binding site location on α7 nAChRs might be in the 

transmembrane domain (TMD) (Young et al., 2008; Bertrand & Gopalakrishnan, 2007). It 

comprises five amino acids within TM1, TM2 and TM4 domains which, when mutated, 

significantly diminish α7 nAChRs allosteric modulators potentiation. These amino acids 

structure an intrasubunit cavity that is situated between the four TMDs and might be alike to the 

binding site for neurosteroids and volatile anesthetics on members of the ligand-gated ion 

channel family, including GABAa and glycine receptors (Witschi et al., 2011). In addition to this 

property, PNU-120596 has been demonstrated to act as a PAM of nAChRs both in vitro and in 

vivo by electrophysiology studies (Hurst et al., 2005).  

The in vitro effects of PNU-120596 were shown to be mediated by α7 nAChRs. This 

compound increases the apparent peak α7 current response and strongly affects the time course 

of current response. At the single-channel level, PNU-120596 increases mean open time but does 

not alter the pattern of the physiological response (Hurst et al., 2005). On the other hand, 
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systemic administration of PNU-120596 to rats improved the auditory-gating deficit caused by 

amphetamine, showing, for the first time, an in vivo efficacy for an α7 nAChR PAM (Hurst et 

al., 2005). 

 PNU-120596 facilitates and/or enhances nicotinic cholinergic neurotransmission in large 

part due to destabilizing desensitized states; on their own, they cannot desensitize nAChRs 

(Buccafusco et al., 2008). A recent study demonstrated that PNU-120596 enhances the effects of 

subthreshold concentrations of choline on native α7 nAChR using patch-clamp 

electrophysiology and histaminergic tuberomammillary neurons in hypothalamic slices, allowing 

physiological levels of choline to activate these receptors and produce whole-cell responses in 

the absence of exogenous nicotinic agents (Gusev and Uteshev, 2009). In the cerebrospinal fluid 

(CSF), choline is present with a low concentration (5-10µM) (Sarter and Parikh, 2005; Parikh 

and Sarter, 2006). It is improbable that in the absence of cholinergic synaptic inputs or 

exogenous nicotinic agents, α7 nAChRs are persistently activated or desensitized by endogenous 

choline (Uteshev et al., 2003). However, the effects may be notably different in the presence of 

PNU-120596, which significantly enhances the responsiveness of α7 nAChRs to nicotinic agents 

(Hurst et al., 2005; Gronlien et al., 2007; Roncarati et al., 2008; Young et al., 2008; Lopez-

Hernandez et al., 2009).  

The dose-response relationships of PNU-120596 indicate that the EC50 value for 

potentiating effects of ACh is near 1.5µM (Gronlien et al., 2007; Young et al., 2008). 

Furthermore, Gronlien et al. (2007) found that concentration-response to agonist ACh and the 

two α7 nAChR agonists GTS-21 and PNU-282987 were potentiated by type I and II α7 PAMs, 

although type II PAMs had greater effects in X. laevis oocytes. This concentration of PNU-
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120596 is readily achievable in the CSF in vivo. The concentration of PNU-120596 identified in 

the rat brains receiving 1mg/kg i.v. was found to be near 1.5 µM (Hurst et al., 2005). 

Furthermore, PNU-120596 can alter the equilibrium between active and desensitized 

states resulting in significantly prolonged responses, even promoting the activation of previously 

desensitized receptors (Gronlien et al., 2007). For example, while continuous exposure to agonist 

(nicotine) desensitizes the α7 nAChR resulting in a decreased response at the receptor level to a 

non-detectable level, PNU-120596 with chronic administration to nicotine is able to restore a 

current even larger than the peak current evoked by the agonist alone (Hurst et al., 2005). This 

attribute does not appear to be specific to PNU-120596, but may be a common feature of type II 

PAMs (Gronlien et al., 2007). This biophysical property could have implications after chronic 

exposure of type II PAMs in vivo. 

 The effective tone produced by PNU-120596 appears to be mediated through modulation 

of the α7 desensitized state. Also, this compound has no effect on ion selectivity and produces an 

insignificant effect on channel conductance (Hurst et al., 2005), sustaining the hypothesis that 

PNU-120596 stabilizes intrinsic states of the channel. A recent in vivo study using rats by 

Christensen et al (2010) showed that [125]-α-bungarotoxin (BTX) autoradiography on acute or 

repeated administration of a selective α7 nAChR agonist was able to increase the number of α7 

nAChR binding sites in many brain regions, predominantly in the prefrontal cortex. However, 

PNU-120596 and NS1738 did not increase [125]-BTX binding, providing an essential difference 

between repeated administration with agonists and positive allosteric modulators of the α7 

nAChR.   
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1.8 Thesis Objectives  

Research in the last decade suggests that α7 nAChRs show promise as potential targets 

for cognitive deficits of the CNS and inflammatory diseases. These studies have mainly explored 

the role of α7 nAChRs in animal models of cognitive dysfunction with selective agonists and 

PAMs. While PAMs have been shown to produce pro-cognitive effects, it is not known whether 

these agents will provide a significant benefit in pain and inflammation. Therefore, this study 

aims to investigate whether the enhancement of endogenous α7 nAChR function will result in a 

beneficial effect in nociceptive, inflammatory and chronic neuropathic pain models. For that we 

examined the effects of two classes of α7 PAMs such as type I (NS1738) and II (PNU-120596) 

in acute thermal (tail-flick and hot-plate) tests, a tonic (formalin) test, an inflammatory 

(carrageenan) test and CCI model in the mouse after systemic and central administration of these 

drugs. NS1738 and PNU-120596 were chosen because of their ability to improve cognitive 

impairments in rats after systemic administration, demonstrating their efficacious activity  

Hurst, et al., 2005; Timmermann et al., 2007). Also, these PAMs have displayed the 

clinically relevant ability to activate the α7 nAChR without altering physiological ion gradients, 

inducing cellular dysfunction due to ionic imbalances, or causing adverse side-effects.  

We hypothesize that reinforcing endogenous cholinergic tone through the α7 nAChR 

neurotransmission with α7 PAMs NS1738 (type I) and PNU-120596 (type II) will produce 

antinociceptive, anti-hyperalgesic and anti-allodynic effects in models of pain in mice. Our first 

aim was to characterize the pharmacology of these type I and II PAMs by determining the time 

course and dose-effect of these drugs after systemic and central administration in different pain 

models. We then identified the nAChR subtypes that mediate the effect of α7 PAMs and their 

site of action. Our second aim was to investigate the interactions between PNU-120596 with 
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both exogenous α7 nAChR selective and non-selective nicotinic agonists in a model of persistent 

pain. Third, we examined the enhancement of nonselective agonist nicotine by PNU-120596 in 

models of acute thermal pain, persistent pain as well as in its effect on body temperature, 

locomotor activity and seizure activity. 
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CHAPTER II 

The Antinociceptive Effects of Nicotinic Receptors Alpha 7 Positive Allosteric Modulators 

in Murine Acute and Tonic Pain Models 

2.1 Chapter II Introduction 

In recent years, the α7 nAChR agonists have received significant attention as possible 

targets for drug discovery due in part to evidence that they may have a cognitive enhancing role, 

antinociceptive and anti-inflammatory properties (Damaj et al., 2000; Wang et al., 2005; de 

Jonge and Ulloa, 2007; Thomsen et al., 2010; Rowley et al., 2010) α7 nAChR agonists such as 

choline, CDP-choline, compound B, JN403 and AR-R17779 were found to exhibit anti-

inflammatory effects in various inflammation and pain models in rodents (Damaj et al., 2000; 

Feuerbach et al., 2009; Medhurst et al., 2008; van Maanen et al., 2009; Gurun et al., 2009; 

Rowley et al., 2010; Marrero et al., 2011).  Although α7 nAChRs agonists have shown beneficial 

effects in inflammatory animal models in some studies, this effect was not consistently seen in 

others (Gao et al., 2010).   

Recently, several structurally diverse and selective α7 nAChRs PAMs, including PNU-

120596 (Hurst et al., 2005), TQS (Grønlien et al., 2007) and NS1738 (Timmermann et al., 2007) 

were reported. Both I and II type PAMs have been shown to exhibit cognitive enhancement in 

vivo in rodents.  For example, PNU-120596 reversed amphetamine-induced gating deficits in rats 

and NS1738 improved performance in the rat social recognition (Hurst et al., 2005; 

Timmermann et al., 2007).  While these observations show that α7 PAMs, belonging to both 

types, are effective in certain rodent cognitive models, none of these agents has been studied in 

animal models of pain and inflammation. 
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Therefore, the present study was designed to investigate the effects of type I and II 

positive allosteric modulators in acute and tonic pain models in the mouse.  PNU-120596 and 

NS1738 effects were tested after different routes of administration in acute thermal (tail-flick and 

hot-plate tests) and tonic (formalin test) pain models in mice.  Site of actions and receptors 

mechanisms were also determined.  Since α7 PAMs were reported to enhance extracellular 

signal-regulated kinase (ERK) signalling in PC12 cells (Hu et al., 2009; El Kouhen et al., 2009), 

we hypothesized that activation of ERK by these allosteric modulators might play an important 

role in their antinociceptive effects.  Hence, we explored this possibility by examining the effects 

of U0126, a specific MEK inhibitor (Duncia et al., 1998), on the antinociceptive actions of α7 

PAMs. 

2.2 Materials and Methods  

2.2.1 Animals 

Male ICR mice obtained from Harlan Laboratories (Indianapolis, IN) and male C57BL/6 mice 

from Jackson Laboratories (Bar Harbor, ME) were used throughout the study.  Mice null for the α7 

(Jackson Laboratories) subunits and their wild-type littermates were bred in an animal care facility at 

Virginia Commonwealth University.  For all experiments, mice were backcrossed at least 8 to 10 

generations.  Mutant and wild types were obtained from crossing heterozygote mice.  This breeding 

scheme controlled for any irregularities that might occur with crossing solely mutant animals.  Mice had 

free access to food and water and were housed in groups of six in a 21°C humidity-controlled animal 

facility approved by the Association for Assessment and Accreditation of Laboratory Animal Care 

(AAALAC). The rooms were on a 12-h light/dark cycle (lights on at 7:00 a.m.).  Mice were 8–10 weeks 

of age and weighed approximately 20–25 g at the start of all the experiments.  All experiments were 

performed during the light cycle (between 7:00 a.m. and 7:00 p.m.) and the study was approved by the 
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Institutional Animal Care and Use Committee of Virginia Commonwealth University. All studies were 

carried out in accordance with the National Institute of Health guide for the Care and Use of Laboratory 

animals. 

2.2.2 Drugs 

(-)-Nicotine hydrogen tartrate salt [(-)-1-methyl-2-(3-pyridyl) pyrrolidine (-)-bitartrate 

salt] was purchased from Sigma-Aldrich (St. Louis, MO). MLA and dihydro-β-erythroidine 

(DHβE) were purchased from RBI (Natick, MA). Naloxone hydrochloride dehydrate, PNU 

120596 [1-(5-Chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)] and PHA-543613 [N-

[(3R)-1-azabicyclo[2.2.2]oct-3-yl]furo[2,3-c]pyridine-5-carboxamide] was obtained from the 

Drug Supply Program of the National Institute on Drug Abuse (Rockville, MD).  NS 1738 [N-(5-

Chloro-2-hydroxyphenyl)-N'-[2-chloro-5-(trifluoromethyl)phenyl] was purchased from Tocris 

Biosciences (Minneapolis, MN). U0126 [1,4-Diamino-2,3-dicyano-1,4-bis(o-

aminophenylmercapto)butadiene monoethanolate] was purchased from Cell Signaling 

Technology (Danvers, MA). All drugs except for PNU 120596, NS 1738 and U0126 were 

dissolved in physiological saline (0.9% sodium chloride) and injected subcutaneously at a total 

volume of 1ml/100 g body weight unless noted otherwise. PNU 120596, NS1738 and U0126 

were dissolved in a mixture of 1:1:18 [1 volume ethanol/1 volume Emulphor-620 (Rhone-

Poulenc, Inc., Princeton, NJ) and 18 volumes distilled water] and administered intraperitoneal 

(i.p.).  All doses are expressed as the free base of the drug. 

2.2.3 Antinociceptive Tests 

2.2.3.1 Tail-Flick Test 



www.manaraa.com

	
   29	
  

The antinociceptive effect of drugs was assessed by the tail-flick method of D’Amour 

and Smith (1941), as modified by Dewey et al. (1970).  A control response (2–4 s latency) was 

determined for each mouse before treatment, and test latency was determined after drug 

administration. To minimize tissue damage, a maximum latency of 10 s was imposed. 

Antinociceptive response was calculated as percent maximum possible effect (%MPE), where 

%MPE = [(test value-control value)/(cut-off (10 s) – control value)] × 100. Groups of 6 to 8 

animals were used for each dose and for each treatment. For the tail-flick test, mice were given a 

5 min pretreatment with either vehicle or nicotine (2.5mg/kg s.c.) or a 15 min pretreatment of 

PHA-543613 (8mg/kg s.c.), PNU-120596 (4 and 8 mg/kg i.p.), or NS1738 (10 and 30 mg/kg 

i.p.). 

2.2.3.2 Hot-Plate Test 

Mice were placed into a 10-cm wide glass cylinder on a hot-plate (Thermojust Apparatus, 

Columbus, OH) as a measure of supraspinal antinociception.  The hot plate is a rectangular 

heated surface surrounded by plexiglass and maintained at 55°C. The device is connected to a 

manually operated timer that records the amount of time the mouse spends on the heated surface 

before showing signs of nociception (e.g. jumping, paw licks).  Two control latencies at least 10 

min apart were determined for each mouse.  The normal latency (reaction time) was 8 to 12 s 

was assessed with a saline injection.  To avoid tissue damage, the hot-plate will automatically 

disengage after 40 seconds.  Antinociceptive response was calculated as % MPE, where %MPE 

= [(test value − control)/(cut-off time (40 s) − control) × 100]. The reaction time was scored 

when the animal jumped or licked its paws.  Mice were tested at different times after i.p. 

injection of NS1738 and PNU-120596. For the hot-plate test, mice were given a 5 min 
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pretreatment with either vehicle or nicotine (2.5mg/kg s.c.) or a 15 min pretreatment of PHA-

543613 (8mg/kg s.c.), PNU-120596 (4 and 8 mg/kg i.p.), or NS1738 (10 and 30 mg/kg i.p.). 

2.2.3.3 Mechanical Sensitivity Test 

Mechanical sensitivity was determined according to the method of Chaplan et al. (1994). 

Mice were placed in a Plexiglas cage with mesh metal flooring and allowed to acclimate for 30 

min before testing. A series of calibrated von Frey hairs (Stoelting, Wood Dale, IL) with 

logarithmically incremental stiffness ranging from 2.83 to 5.88 expressed dsLog10 of [10 £ force 

in (mg)] were applied to the paw with a modified up-down method (Dixon, 1965).  In the 

absence of a paw withdrawal response to the initially selected hair, a thicker hair corresponding 

to a stronger stimulus was presented. In the event of paw withdrawal, the next weaker stimulus 

was chosen. Each hair was presented perpendicularly against the paw, with sufficient force to 

cause slight bending, and held 2–3 s. The stimulation of the same intensity was applied 5 times 

to the hind paw at intervals of a few seconds. The mechanical threshold was expressed as force 

in (g), indicating the force of the Von Frey hair to which the animal reacted (paw withdrawn, 

licking or shaking). The mechanical allodynia thresholds were measured before (pre-drug) and at 

30 min after i.p treatment of the following drugs: PNU 120596 and NS1738. 

2.2.3.4 Formalin Test 

The formalin test was carried out in an open Plexiglas cage, with a mirror placed under 

the floor to allow an unobstructed view of the paws.  Mice were allowed to acclimate for 15 min 

in the test cage before formalin injection. Each animal was injected with 20 µl of 2.5% formalin 

in the intraplantar (i.pl.) region of the right hindpaw.  Mice were then observed (two at a time) 0-

5 min (Phase 1) and 20-45 min (Phase 2) post-formalin, and the amount of time spent licking the 
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injected paw was recorded.  The period between the two phases of nociceptive responding is 

generally considered to be a phase of weak activity.  The amount of time spent licking the 

injected paw was recorded with a digital stopwatch.  The Formalin test was carried out in an 

open Plexiglas cage, with a mirror placed at a 45-degree angle behind the cage to allow an 

unobstructed view of the paws.   

PNU-120596, NS1738, or vehicle were injected i.p. at different times before the formalin 

injection.  For the antagonists studies, MLA, DHBE or naloxone was injected s.c. 5 min before 

the formalin injection.  Site studies were carried out by pretreating the mice with PNU-120596 

(4mg/kg i.p.) 15 min before i.t. (10µg/mouse) or i.pl. (10µg/5µl contralateral paw or ipsilateral 

paw) MLA.  

2.2.4 Intrathecal Injections 

I.t. injections were performed free-hand using a 30-gauge needle attached to a glass 

microsyringe inserted between the L5 and L6 lumbar space in unanesthetized mice according to 

the method of Hylden and Wilcox (1980).  The injection volume in all cases was 5 µl. The 

accurate placement of the needle was evidenced by a reflexive “flick” of the mouse's tail.  

2.2.5 Locomotor Activity Test 

Mice were placed into individual Omnitech photocell activity cages (28 x 16.5 cm) after 

15 minutes after the i.p. administration of either i.p. vehicle or PNU-120596 at different doses.  

Interruptions of the photocell beams (two banks of eight cells each), which assess walking and 

rearing, were then recorded for the next 30 minutes.  Data were expressed as the number of 

photocell interruptions. 
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2.2.6 Motor Coordination Test  

In order to measure motor coordination, we used Rotarod (IITC Inc. Life Science). The 

animals are placed on textured drums (1¼ inch diameter) to avoid slipping.  When an animal 

drops onto the individual sensing platforms, test results are recorded.  Five mice tested at a rate 

of 4 rpm. Naive mice were trained until they could remain on the rotarod for 5 min.  Animals 

that failed to meet this criterion within three trials were discarded.  Fifteen minutes after the 

injection of vehicle or drugs, mice were placed on the rotarod for 5 min.  If a mouse fell from the 

rotarod during this time period, it was scored as motor impaired. Percent impairment was 

calculated as follows: % impairment = [(180-test time/180*100].  Mice were pretreated with 

either i.p. vehicle or PNU-120596 at different doses 15 min before the test. 

2.2.7 Chronic PNU-120596 Administration Protocol 

Mice were administered PNU-120596 (4 mg/kg, i.p.) once a day for six days and then 

were challenged with PNU-120596 (4mg/kg, i.p.) on day 7 and evaluated in the formalin test.  

Another group was exposed to vehicle for six days and then challenged with PNU-120596 on the 

seventh day.  A vehicle-control group, in which mice were exposed to seven days of vehicle, was 

also included.  

2.2.8 Time Course of PNU-120596 & NS1738 Levels in Brain and Plasma 

For the determination of plasma and brain concentrations of the parent compound, naïve 

mice were dosed with the compounds as indicated and sacrificed at various time points post-

dosing.  For analytical determination of plasma concentrations, blood was collected into 

heparinized tubes and then centrifuged, and the separated plasma was frozen at –20°C until 

analysis.  For the determination of brain concentrations, animals were decapitated at the various 
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time points, and the brains were immediately removed and rapidly freed from blood vessels as 

much as possible.  The resulting brain tissues were immediately frozen at –20°C, weighed and 

homogenized, and then the homogenate was stored at –20°C.  For analysis, compounds were 

extracted from the samples via liquid-liquid extraction and were quantified by liquid 

chromatography/mass spectroscopy. As a result, it is able to measure concentrations of either 

NS-1738 or PNU-120596 down to 1 ng/ml in plasma (~ 3nM) and 10 ng/ml in brain (~ 30 nM) 

(Timmermann et al 2007). Brain and plasma levels of NS1738 and PNU-120596 were obtained 

by Abbott laboratories.  

2.2.9 Statistical Analysis 

The data obtained were analysed using GraphPad software programme and expressed as 

the mean ± S.E.M.  Statistical analysis was done by one-way or two-way analysis of variance 

test ANOVA followed by post hoc, Tukey or Bonferroni tests. P-values less than 0.05 (P < 0.05) 

were considered significant. 

2.3 Results 

2.3.1 Lack of Antinociceptive Effect of α7 PAMs in Acute Thermal Pain in Mice 

 The tail-flick and hot-plate tests were used to determine the antinociceptive effects of the 

α7 agonist and α7 PAMs after i.p. administration in acute thermal pain models. A 5 min 

pretreatment of nicotine (2.5 mg/kg) induced significant antinociceptive effects in the tail-flick 

[F(6,35) = 20.91, p < 0.0001] and hot-plate [F(6,35) = 22.68, p < 0.0001] tests when compared to 

vehicle (Figure 1A & B). In contrast, none of the α7 compounds showed significant 

antinociceptive effects at any doses tested in the tail-flick [F(5,30) = 1.330, p = 0.2783] or hot-

plate [F(5,30) = 1.154, p = 0.3546] tests.  Figure 1 (A & B) shows the lack of antinociceptive 
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activity 15 min after administration of the PNU-120596 (4 and 8 mg/kg, i.p.), NS1738 (10 and 

30 mg/kg, i.p.) and PHA-543613 (8 mg/kg, s.c.) in both tests.  A similar lack of effect was 

observed at later pretreatment times (1 and 3 hr) after injection (Data not shown).   
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Figure 1. Antinociceptive effect of various α7 nicotinic compounds in the tail-flick and hot-
plate tests after acute administration in mice. 
Figure (A) Effects of nicotine (2.5 mg/kg, s.c.), PHA543613 (8mg/kg., s.c.), PNU-120596 (4 and 
8 mg/kg., i.p.) and NS1738 (10 and 30mg/kg., i.p.) in the tail-flick test.  Mice were pretreated s.c. 
with nicotine 5 min before testing. The other treatment groups received PHA-543613, PNU-
120596 or NS1738 15 min before the tail-flick test.  Figure (B) Effects of nicotine, PHA-543613, 
PNU-120596, and NS1738 in the hot-plate test. Mice were treated with the same doses and 
pretreatment time as in the tail-flick test. Each group represents the mean ± SE of 6-8 mice and 
*denotes p<0.05 vs. vehicle.  Each point represents the mean ± SE of 6 mice. NS = NS1738; 
PNU = PNU-120596; Nic = nicotine; Veh = vehicle; %MPE = percent of maximum effect 
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2.3.2 The Effects of α7 PAMs on Mechanical Sensitivity 

The effects of PNU-120596 (8 mg/kg, i.p.) and NS1738 (30 mg/kg, i.p.) on the 

mechanical sensitivity were measured using calibrated von Frey filaments 15 min after injection. 

As shown in Figure 2, neither PNU-120596 nor NS1738 produced significant [F2(2,3) = 2.172, p = 

0.2610] differences in mechanical sensitivity in response to hind paw stimulation using von Frey 

filaments. 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

	
   37	
  

 

(A) 

 

 

 

 

 

 
 
Figure 2. The effects of α7 PAMs on mechanical sensitivity. 
Effects of NS1738 (30 mg/kg, i.p.) and PNU-120596 (4 mg/kg, i.p.) on mechanical sensitivity in 
mice.  The two α7 PAMs were given i.p to animals and 30 min later, their withdrawal thresholds 
(g) were measured. Each point represents the mean ± SE of 6 mice. NS = NS1738; PNU = PNU-
120596; Veh = vehicle. 
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2.3.3 Time Course of Type I α7 PAM in the Formalin Test 

 NS1738, a type I α7 PAM, was evaluated for its effect in the formalin test, a mouse 

model of tonic pain.  We first tested NS1738 in the formalin test at different times after injection.  

As shown in Figure 3 (A & B), NS1738 (10mg/kg, i.p.) did not produce a significant decrease 

[F(3,35) = 2.108, p = 0.1169] in the duration of i.pl. formalin-induced nociceptive behavior in 

phase I and II at different times (15 min and 1 and 3 hr) after injection. 
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Figure 3.  Effects of α7 type I PAM NS1738 in the mouse formalin test of persistent pain. 
Time-course of the effects of NS1738 on (A) phase I and (B) phase II in the formalin test after 
i.p. administration.  Mice treated with either vehicle or NS1738 (10 mg/kg, i.p) at different times 
after injection (15min, 1h and 3h) before i.pl. formalin injection in the right paw. Each point 
represents the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes 
p<0.05 vs. vehicle.  Veh = vehicle. 
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2.3.4 Dose-Response Curve of Type I α7 PAM in the Formalin Test 

We then tested several NS1738 doses (1, 4, 10, 15 and 30 mg/kg, i.p.) 15 min after 

injection in the formalin test. As shown in Figure 4A, NS1738 produces a small but significant 

decrease F5,37 = 7.660, p < 0.0001 of formalin-induced nociceptive behavior at the two highest 

doses of 15 and 30 mg/kg (˜30% decrease compared to vehicle). However, NS1738 failed to 

elicit a significant decrease [F(3,33) = 1.450, p = 0.2326] in the nociceptive effects of phase II at 

any of the doses tested when compared to vehicle (Figure 4B).   
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Figure 4.  Effects of α7 type I PAM NS1738 in the mouse formalin test of persistent pain. 
Dose-response relationship for NS1738 was then established in mice 15 min after i.p. injection of 
various doses of drugs in (A) phase I and (B) phase II of the formalin test. Each point represents 
the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes p<0.05 vs. 
vehicle.  Veh = vehicle. 
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2.3.5 Time Course of Type II α7 PAM in the Formalin Test 

Type II α7 PAM, PNU-120596, was evaluated for its effect in the formalin test.  We first 

determined the time-course of PNU-120596 effects after injection.  In contrast to NS1738, PNU-

120596 significantly decreased the spontaneous pain-related (nociceptive) behavioral response to 

formalin.  As shown in Figure 5 (A & B), the onset of action for PNU-120596 (4 mg/kg, i.p.) 

was fairly rapid with maximum antinociception occurring between 15 and 60 min.  However, the 

duration of PNU-120596-induced antinociception was long.  Indeed, PNU-120596’s effect 

disappeared completely within 24 hr after i.p. administration of the drug in mice.  As illustrated 

in Figure 5B, PNU-120596’s effect in phase II gradually diminished to 40% decrease at 16 hr 

(significantly different from vehicle) [F(6,51) = 22.99, p < 0.0001] and disappeared completely 

within 24 hr after injection.  A similar time-course [F(6,51) = 30.78, p < 0.0001] was seen in phase 

I with a rebound at time 8 hr (Figure 5A).   
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Figure 5. Effects of α7 type II PAM PNU-120596 in the mouse formalin test of persistent 
pain. 
Time-course of the effects of PNU-120596 on (A) phase I and (B) phase II in the formalin test 
after i.p. administration.  Mice treated with either vehicle or PNU-120596 (4 mg/kg, i.p) at 
different times after injection (15min, 1, 3, 6, 16 and 24 hrs) before i.pl. formalin injection in the 
right paw. Each point represents the mean ± S.E.M of total time spent licking for 8-10 mice per 
group and *denotes p<0.05 vs. vehicle.  Veh = vehicle. 
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2.3.6 Dose-Response Curve of Type II α7 PAM in the Formalin Test 

Dose-response relationship was then established for PNU-120596 in mice by measuring 

antinociception at the time of maximal effect of 15 min (Figure 6A & B). PNU-120596 produced 

a dose-responsive decrease in formalin nociceptive behavior with an ED50 (±CL) of 12.8 (6.9-

23.3) and 2.78 (2.3-3.3) mg/kg in phases I and II respectively. The dose of 4 mg/kg of PNU-

120596 was used for the subsequent studies. 
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Figure 6. Effects of α7 type II PAM PNU-120596 in the mouse formalin test of persistent 
pain. 
Dose-response relationship for PNU-120596 was then established in mice 15 min after i.p. 
injection of various doses of drugs in (A) phase I and (B) phase II of the formalin test. Each point 
represents the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes 
p<0.05 vs. vehicle.  Veh = vehicle. 
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2.3.7 Effects of Type I and II α7 PAMs after i.t. Administration in the Formalin Test 

The lack of effect of NS1738 after peripheral administration (i.p.) prompted us to give the 

drug centrally via the intrathecal route.  Mice were pretreated i.t. with NS1738 at the dose of 

15µg/mice and tested 5 min later in the formalin test.  As shown Figure 7 the type I PAM elicited 

no significant effect in decreasing nociceptive behavior compared to vehicle-treated animals.  

However, an i.t. administration of type II PAM PNU-120596 produced a significant [F(2,18) = 

14.64, p = 0.0002] antinociceptive effect in phase II of the formalin test in mice at a dose 7-times 

lower (2 µg/mice) that NS1738.   
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Figure 7. Antinociceptive effect of NS1738 and PNU-120596 in the formalin test after i.t. 
administration. 
Mice were pretreated i.t. with either vehicle, NS1738 (15 µg/mice) or PNU-120596 (2 µg/mice) 
and tested 5 min in the formalin model.  While NS1738, a type I PAM elicited no significant 
effect in decreasing nociceptive behavior in phase II of the formalin test.  Each point represents 
the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes p<0.05 vs. 
vehicle. NS = NS1738; PNU = PNU-120596; Veh = vehicle. 
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2.3.8 NS1738 Blocks PNU-120596’s Antinociceptive Effect in the Formalin Test 

While NS1738 failed to elicit antinociceptive effects after peripheral and central 

administration, it blocked the actions of PNU-120596 in the formalin test.  Indeed, pretreatment 

of mice with NS1738 (30mg/kg, i.p.) partially blocked the antinociceptive response [F(3,23) = 

24.14, p < 0.0001] elicited by an active dose of PNU-120596 (4 mg/kg, i.p.) during phase II of 

the formalin test (Figure 8).  
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Figure 8. NS1738 blocks PNU-120596’s antinociceptive effect in the formalin test. 
Mice were pretreated with NS1738 (30mg/kg, i.p.) 15 min before an active dose of PNU-120596 
(4mg/kg, i.p.) and tested 15 min after the second injection in the formalin test. The total time 
spent licking the right hind paw was measured in the late phase.  Each bar represents the mean ± 
S.E.M for each group of 6-8 mice. The asterisks denote the significance levels when compared 
with the control group: *p < 0.05 and  #p < 0.05 versus NS + PNU. NS = NS1738; PNU = PNU-
120596; Veh = vehicle. 
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2.3.9 The Lack of Effect of α7 type II PAM on Locomotor Activity and Coordination of Mice 

In order to determine if the effects of PNU-120596 in the formalin test are not due to 

disruption of the locomotor activity during testing, we evaluated the effect of antinociceptive 

doses of PNU-120596 on spontaneous activity and motor coordination of mice.  As seen in 

Figure 9, mice treated with PNU-120596 at doses of 4 and 8 mg/kg, i.p. did not show significant 

changes in locomotor activity (locomotor test) [F(2,11) = 0.8252, p = 0.4365] or motor 

coordination (rotarod test) [F(2,12) = 0.08455, p = 0.9195], 15 min after testing. 
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Figure 9. Effects of PNU-120596 on locomotor activity and motor coordination of mice. 
(A) The effects of vehicle and PNU-120596 (4 and 8 mg/kg, i.p.) on mouse locomotor activity.  
Animals were tested 15 min after injection and their locomotor activity were measured for 30 
min.  (B) The effects of vehicle and PNU-120596 (4 and 8 mg/kg, i.p.) in the rotarod test after 
administration in mice.  Each point represents 6-8 animals per group.  
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2.3.10 Time Course of a Selective α7 Agonist in the Formalin Test 

We compared the effects of the type II α7 PAM, PNU-120596 in the formalin test to a 

full α7 agonist, PHA-543613.  PHA-543613 at 6mg/kg given s.c. significantly reduced the 

formalin-induced nociceptive behavior during both early F2,15 = 4.366, p = 0.0320 and late F2,15 = 

25.80, p < 0.0001 phases (Figure 10A & B).  The onset of action was relatively fast with a 

maximum between 0 and 15 min and the effects disappeared within 60 min after the injection 

(Figure 10A & B).   
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Figure 10.  Effects of α7 agonist PHA-543613 in the mouse formalin test of persistent pain. 
Time-course of the effects of PHA-543613 on (A) phase I and (B) phase II in the formalin test 
after s.c. administration.  Mice treated with either vehicle or PHA-543613 (6 mg/kg, s.c.) at 15 
and 60 min after injection before i.pl. formalin injection in the right paw. Each point represents 
the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes p<0.05 vs. 
vehicle. Veh = vehicle 
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2.3.11 Dose-Response Curve of a Selective α7 Agonist in the Formalin Test 

When a dose-response relationship was established, a U-shape curve emerged for both 

phase I and II (Figure 11A & B).  PHA-543613 reduced formalin nociceptive behaviors at 

narrow range of doses (4 and 6 mg/kg in phase II) but the antinociception effect of the drug was 

lost at higher doses.  
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Figure 11.  Effects of α7 agonist PHA-543613 in the mouse formalin test of persistent pain. 
Dose-response relationship for PHA-543613 was then established in mice 15 min after s.c. 
injection of various doses of drugs in (A) phase I and (B) phase II of the formalin test. Each point 
represents the mean ± S.E.M of total time spent licking for 8-10 mice per group and *denotes 
p<0.05 vs. vehicle. Veh = vehicle 
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2.3.12 Role of α7 and β2* nAChRs Subtypes in PNU-120596-induced Antinociception in the  

Formalin Test  

We examined the role of β2* and α7 nAChRs subtypes in mediating the antinociceptive 

effect of PNU-120596 (4 mg/kg i.p.).  As predicted, the α7 antagonist MLA (10 mg/kg, s.c.) 

completely blocked PNU-120596’s effects in both phase I [F(5,34) = 30.77, p < 0.0001] and II 

[F(5,34) = 63.11, p < 0.0001] (Figure 12A & B). In contrast, DHβE (2 mg/kg, s.c.), a β2-

containing selective antagonist, failed to block PNU-120596’s actions in the formalin test 

(Figure 12A & B).      
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Figure 12. Nicotinic receptors subtypes involved in PNU-120596-induced antinociception in 
the formalin test. 
Blockade of the antinociceptive effect of PNU-120596 in the (A) phase I and (B) phase II of 
formalin test by different nicotinic antagonists.  Mice were pretreated with MLA (10 mg/kg, s.c.) 
or DHβE (2 mg/kg, s.c.) 15 min before an active dose of 4 mg/kg of PNU-120596. Fifteen min 
later, mice were injected with formalin (2.5% intraplantary, 20 µl) and then observed for pain 
behaviors. Each bar represents the mean ± S.E.M for each group of 6-8 mice and *denotes 
p<0.05 vs. vehicle-vehicle group. Veh = vehicle; PNU = PNU-120596.  
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2.3.13 Role of α7 nAChRs Subtypes in PNU-120596-induced Antinociception in the Formalin  

Test  

The blockade of PNU-120596’s effects in the formalin test being mediated through α7 

nAChRs was confirmed using the α7 KO mice.  As shown in Figure 13 (A & B), PNU-120596-

induced antinociception in both phase I [treatment: [F(1,9) = 8.136, p = 0.0106; gene: [F(1,9) = 

2.197, p = 0.1556; interaction: [F(1,18) = 11.56, p = 0.0032] and II [treatment: [F(1,9) = 107.3, p < 

0.0001; gene: [F(1,9) = 79.20, p < 0.0001 ; interaction: [F(1,18) = 79.20, p < 0.0001] was lost in the 

α7 KO mice compared to their WT littermates (Figure 13A & B). 
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Figure 13. Antinociceptive effects of PNU-120596 in the α7 WT and KO mice using the 
formalin Test. 
Mice received a dose of 4 mg/kg, i.p. of PNU-120596 in α7 WT and KO mice and 15 min later 
were tested in (A) the phase I and (B) phase II of formalin test.  Data was expressed as mean ± 
SEM of licking time. Each group represents the mean ± SE of 6-8 mice and *denotes p<0.05 vs. 
vehicle.  
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2.3.14 Role of µ opioid Receptors in PNU-120596-induced Antinociception in the Formalin Test  

Pretreatment with naloxone (1 mg/kg, s.c.), an opioid receptor antagonist, did not abolish 

the antinociceptive effect of PNU-120596 given at the dose of 4 mg/kg (i.p.) in phase I [F(3,16) = 

9.237, p = 0.0009] and phase II [F(3,16) = 69.05, p < 0.0001] (Figure 14A &B).  
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Figure 14.  Lack of blockade of PNU-120596-induced antinociception in the formalin test 
by naloxone. 
Mice were pretreated with s.c. naloxone 15 min prior to PNU-120596 (4mg/kg, i.p.) injection.  
They were tested 15 min after the second injection in the formalin test.  The time spent licking 
the injected paw was recorded in (A) the early and (B) late phase after the formalin injection. 
Data was expressed as mean ± SEM of licking time. Each group represents the mean ± SE of 6-8 
mice and *denotes p<0.05 vs. vehicle-vehicle group.  
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2.3.15 Contribution of Peripheral and Spinal α7 nAChRs to PNU-120596’s Antinociceptive 

Response  

Since α7 nAChRs subtypes are present in both the periphery and the spinal cord, we 

examined the contribution of these sites to PNU-120596’s antinociceptive response in the 

formalin test.  When the α7 antagonist MLA was given i.t. (10 µg/mouse) 5 min before PNU-

120596 (4mg/kg, i.p.) administration, the effect of the α7 PAM II was completely reversed 

[F(2,18) = 17.33, p < 0.0001] (Fig. 15A). Local i.pl. administration of MLA (10 µg/mouse) 

partially blocked [F(3,23) = 72.37, p < 0.0001] PNU-120596-induced antinociception. In contrast, 

the contralateral paw over the time period observed MLA given i.pl. to the left paw failed to 

block the antinociceptive effect of PNU-120596 (Fig. 15B).  
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Figure 15. Blockade of PNU-120596’s antinociceptive effect after i.t. or i.pl. MLA 
administration in the formalin test. 
(A) The effects of i.t. MLA on PNU-120596’s antinociceptive effect in the phase II of the 
formalin test. Mice were pretreated with either PNU-120596 (4mg/kg, i.p.) or vehicle (i.p.) 15 
min prior to MLA (10µg/5µl i.t.) injection, and tested 5 min after later in the formalin test. (B) 
The effects of i.pl. MLA on PNU-120596’s antinociceptive effect in the phase II of the formalin 
test.  Mice were pretreated with either PNU-120596 (4mg/kg, i.p.) or vehicle (i.p.) 15 min prior 
to i.pl. MLA (10µg/5µl in the contralateral or ipsilateral paw) injection, and tested 5 min after 
later in the formalin test.  Each bar represents the mean ± S.E.M for each group of 6-8 mice. *p < 
0.05 versus vehicle-vehicle group; #p < 0.05 versus 4mg/kg PNU-120596. Veh = vehicle; PNU = 
PNU-120596; Contra = contralateral; Ipsi = ipsilateral.  
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2.3.16 The Effects of i.t. Administration of the MEK Inhibitor U-0126 on PNU-120596’s 

Antinociceptive Effect in the Formalin Test 

We next investigated whether the antinociceptive effect of PNU-120596 was mediated 

through ERK activation in mice. Pretreatment of mice with i.t. injection of gradually increasing 

doses of U0126, a selective MEK inhibitor (Kominato et al., 2003; Aley et al., 2001) , on its own 

did not affect nociceptive responses induced by formalin injection in U0126-treated mice 

compared to their vehicle controls at any of the doses tested (0.04, 0.2 and 1 µg/mouse, i.t.) 

(Figure 16). However, U0126 administered 5 min before PNU-120596 (4mg/kg, i.p.) dose- 

dependently blocked [F(7,36) = 13.38, p < 0.0001] PNU-120596-induced antinociception in phase 

II of the formalin test. U0126 at the dose of 1 µg/mouse completely reversed PNU-120596’s 

actions in the formalin test. 
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Figure 16. Effects of MEK inhibitor, U0126, on PNU-120596-induced antinociception in the 
formalin test. 
Mice were pretreated with the MEK inhibitor U0126 (0.04, 0.2 and 1µg/mouse, i.t.) or vehicle 5 
min prior to PNU-120596 (4mg/kg., i.p.) injection.  Mice were tested 15 min later in the phase II 
of the formalin test.  Each bar represents the mean ± S.E.M for each group of 6-8 mice.  *p < 
0.05 versus vehicle-vehicle goup; #, p < 0.05 versus 4mg/kg PNU-120596. Veh = vehicle; PNU 
= PNU-120596. 
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2.3.17 Tolerance did not Develop to PNU-120596’s Effects in the Formalin Test after Chronic 

Exposure 

We investigated if tolerance develops to PNU-120596’s antinociceptive effects after 

chronic exposure of the drug.  The dosing protocol of PNU-120596 was based on the time-course 

study of the drug shown earlier (24 hr long).  Animals were treated with either vehicle or PNU-

120596 (4 mg/kg, i.p.) once a day (8:00 am) for 6 days.  On day 7, mice were challenged with 

PNU (4 mg/kg, i.p.) and tested 15 min later. As seen in Figure 17A, tolerance did not develop 

[F(2,15) = 17.89, p < 0.0001] after chronic exposure to PNU-120596 in phase II of the formalin 

test.  Furthermore, the chronic treatment of PNU-120596 did not significantly change the weight 

gain of mice compared to the vehicle-treated group (Figure 17B). 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

	
   67	
  

 

(A) 

 

(B) 

 

 
Figure 17. Lack of tolerance to PNU-120596-induced antinociception in the formalin test 
after chronic administration of the drug. 
(A) Mice were treated with either vehicle or PNU-120596 (4 mg/kg, i.p.) once a day for 6 days.  
On day 7, mice were challenged with PNU (4 mg/kg, i.p.) and tested 15 min after in the phase II 
of the formalin test.  Control group received vehicle for 6 days and were challenged on day 7 
with vehicle and tested 15 min later in the formalin test. (B) Lack of significant effect on the 
body weight change of mice after chronic injection PNU-120596.  Body weight change (Body 
weight at the injection day – Initial Body weight before treatment) in the two treatment groups 
was recorded daily at the same time.   Each bar represents the mean ± S.E.M for each group of 6-
8 mice. *p < 0.05 versus vehicle-vehicle group. Veh = vehicle; PNU = PNU-120596.  
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2.3.18 Measurement of α7 type I and II PAMs Levels in the Brain and Plasma 

To estimate the ability of PAMs to permeate the blood-brain barrier, mice were 

administered 1 mg/kg of either NS 1738 or PNU-120596 i.p.  Brain and plasma concentrations 

were measured at times 0.25, 2, 4 and 16 hr for PNU-120596 after dosing and it corresponded to 

150 to 250 ng/ml in plasma versus brain, respectively at the 0.25 hr time point and less with the 

latter time points. By the time point of 4 hr after PNU-120596 injection, brain and plasma levels 

were close to 2 ng/ml (Figure 18A).  Brain and plasma concentrations were measured at times 

0.25, 2 and 4 hr for afer 1 mg/kg i.p. of NS 1738 which yielded only 1 ng/ml in brain versus 

1000 ng/ml in plasma samples (Figure 18B).  To assess if pharmacokinetic factors are 

responsible for the lack of pharmacological effects for NS-1738, a 30 mg/kg i.p. dose was also 

assessed and brain to plasma ratio estimated at 15 min time point. As shown in Figure 18C, 

sufficient NS1738 (close to 300 ng/ml) crosses the blood-brain ratio to further support 

pharmacodynamic differences between type I and II PAMs in regards to antinociceptive efficacy.  
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Figure 18. Pharmacokinetics of NS-1738 and PNU-120596. 
(A) Mice (n=3) were dosed with 1 mg/kg i.p. of PNU-120596 at time 0, and both brain and 
plasma samples were collected at 0.25, 2 4 and 16 hours and analyzed by mass spectrometry for 
PNU-120596 content in order to estimate the brain/plasma ratio at each time point. (B) Mice 
(n=3) were dosed with 1 mg/kg i.p. NS-1738 at time 0 and both brain and plasma samples were 
collected at times 0.25, 2 and 4 hours. (C) To parallel in vivo efficacious doses, mice (n=3) were 
dosed with either 1 mg/kg or 30 mg/kg i. p. NS-1738 at time 0 and both brain and plasma 
samples were collected at 15 min to compare levels. (D). Pharmacokinetic-Pharmacodynamic 
(PK-PD) relationships of PNU-120596. Time course of efficacy and relation to plasma and brain 
concentrations of PNU-120596. Antinociception [% Maximum Possible Effect (%MPE)] was 
assessed 0.25, 2, 4, 8, 16 and 24 h postdose of 4 mg/kg (left y-axis).  Plasma and brain levels of 
PNU-120596 were determined in a satellite group of mice (plotted along the right y-axis).  
Although plasma and brain concentrations of PNU-120596 decreased to levels below 5 ng/ml by 
2 h, significant effect in the formalin test still persists (p < 0.05 versus vehicle controls).  All the 
data are represented as mean ± S.E.M.  
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2.4 Summary of Chapter II Results   

In this study, we evaluated the antinociceptive activity of α7 nAChRs PAMs NS1738 and 

PNU-120596 in animal models of acute and tonic pain behavior.  Our studies show that similar 

to α7 agonists, α7 PAMs are not active in acute thermal pain tests (hot-plate and tail-flick) and 

mechanical sensitivity tests, after systemic administration in mice 

In the formalin test, NS1738 marginally reduced tonic pain behavior in phase I, but not in 

phase II. However, PNU-120596 displayed significant and long-lasting effects in the both phases 

of the test, as showed by dose-response and time-course analyses. Similarly, the selective α7 

nAChR agonist PHA-543613, at a narrow range of doses, reduced nociceptive behavior in the 

formalin test. Additionally, PNU-120596, at antinociceptive doses, had no effect on locomotor 

activity and motor coordination in mice. Indeed, tolerance to PNU-120596’s effects in the 

formalin test did not develop after chronic exposure 

The α7 antagonist MLA blocked effects of PNU-120596 in the formalin test, while β2-

nAChR-containing selective antagonist DHβE did not. In addition, genetic deletion of α7 nAChR 

reduced PNU-120596’ antinociceptive effects. However, opioid receptor antagonist naloxone did 

not alter PNU-120596’s effect in the formalin test. These results suggest that modulation of α7 

nAChRs by PNU-120596 was α7 receptor-mediated.   

Furthermore, central and peripheral site seems to mediate PNU-120596’s effect in the 

formalin test. Indeed, PNU-120596 was found to have an effect after i.p. and i.t. administration 

in the formalin test, whereas NS1738 had no effect. Furthermore, MLA (i.t.) reversed PNU-

120596 (i.p.) while MLA (i.pl.) partially blocked PNU-120596 (i.p.) in the ipsilateral paw of that 

received formalin (i.pl.), however MLA produced no effect on PNU-120596’s actions in the 
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contralateral paw. Both PNU-120596 and NS1738 were found to cross the blood-brain barrier 

and diminish in concentration over time. The long-acting effect of PNU-120596 in the formalin 

test cannot be simply explained by the pharmacokinetic profile of the drug.  Indeed as shown in 

Figure 18, most of the PNU-120596 is eliminated from plasma and brain of the animals 4 hr after 

injection of the drug. These findings indicate discordance between the Pharmacokinetic-

Pharmacodynamic (Figure 18D) properties of PNU-120596 that may represent a key mechanistic 

feature of the antinociceptive efficacy associated with α7 nAChRs positive allosteric modulation.   

Our results additionally show that MEK inhibitor U0126 produced no effect in the 

formalin test, although dose-dependently blocked, and at our highest administered dose, 

completely reversed, PNU-120596’s effects in phase II of the formalin test. 
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CHAPTER III 

In Vivo Pharmacological Interactions Between Type II Positive Allosteric Modulator of α7  

Nicotinic Acetylcholine Receptors and Nicotinic Agonists in Mice 

 

3.1 Chapter III Introduction 

Endogenous cholinergic neurotransmission, which is mediated by ACh and choline (Zhu 

et al., 2009), is a strong candidate for enhancement by α7 nAChR PAMs.  While α7 PAMs were 

reported to enhance the actions of ACh in in vitro α7 nAChRs expressed systems (Bertrand and 

Gopalakrishnan, 2007), the rapid clearance of ACh by acetylcholinesterases in the synaptic cleft 

makes choline, an ACh precursor and metabolite, a more likely candidate (Alkondon and 

Albuquerque, 2006).  Indeed, choline is a selective endogenous agonist for α7 nAChRs in the 

CNS (Alkondon et al., 1997; González-Rubio et al., 2006).  Furthermore, PNU-120596 was 

recently reported to enhance choline’s effects on native and expressed α7 nAChRs (Kalappa et 

al., 2010; Gusev and Uteshev 2010). In addition, exogenous choline administered centrally has 

been known to produce antinociception mediated by α7 nAChR in various animal models of pain 

(Damaj et al., 2000; Wang et al., 2005).  Therefore, in this study, we used choline to investigate 

the effects of PNU-120596 on an endogenous α7 agonist in a mouse model of pain.  Choline is a 

charged cation and cannot easily pass through the blood–brain barrier (BBB) (Allen and 

Lockman, 2003), so the interaction with α7 PAMs was evaluated by intrathecally administered 

choline. 

The present study investigated the effects of PNU-120596 administered alone or in 

combination with nicotinic agonists in the mouse formalin test, a model of persistent pain 

(Hunskaar and Hole, 1987).  Studies were designed to test the working hypotheses that (a) PNU-
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120596 administered alone would produce antinociception, and (b) PNU-120596 would 

synergistically enhance the effects of the α7 nAChR agonist choline.  In particular, we assessed 

the nature of the interaction between PNU-120596 and choline in the formalin test by performing 

an isobolographic analysis (Tallarida, 2001; Tallarida, 2006; Gessner., 1995; Tallarida and Raffa, 

2010; Ossipov et al., 1990). In addition, we evaluated the interaction of PNU-120596 with PHA-

54613, an exogenous selective α7 nAChR agonist, in the formalin test.  Finally, considering that 

PNU-120596’s potentiation of nicotine’s adverse effects might be a clinical concern for smokers 

and patients undergoing α7 nAChR agonist-based nicotine-replacement therapy (Brunzell and 

McIntosh, 2012), we assessed the interaction between PNU-120596 and nicotine using acute 

thermal pain tests (tail-flick and hot-plate tests), locomotor activity, body temperature and 

convulsing activity in mice. 

3.2 Materials and Methods 

3.2.1 Animals  

Male adult ICR mice obtained from Harlan Laboratories (Indianapolis, IN) were used 

throughout the study. All other animal parameters including housing, care and demographics 

were the same as described in chapter II.   

3.2.2 Drugs 

(-)-Nicotine hydrogen tartrate salt [(-)-1-methyl-2-(3-pyridyl) pyrrolidine (-)-bitartrate 

salt] was purchased from Sigma-Aldrich (St. Louis, MO). MLA and choline were purchased 

from RBI (Natick, MA). PNU-120596 [1-(5-Chloro-2,4-dimethoxy-phenyl)-3-(5-methyl-

isoxazol-3-yl), PHA-543613 (selective α7 agonist) and morphine were obtained from the Drug 

Supply Program of the National Institute on Drug Abuse (Rockville, MD). Both, choline and 
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morphine were dissolved in physiological saline (0.9% sodium chloride) and injected 

intrathecally or subcutaneously respectively, at a total volume of 1ml/100 g body weight unless 

noted otherwise.  

3.2.3 Antinociceptive Tests 

3.2.3.1 Drug Interactions in the Formalin Test 

The Formalin test was conducted as described in chapter II.  

To evaluate the nature of interaction between PNU-120596 and choline, dose-response 

curves for PNU-120596 and choline were obtained using at least six animals at each dose. Mice 

were given i.p. injections of either vehicle or PNU-120596 (0.1, 0.32, 1.0, 3.2 or 10 mg/kg), or l 

i.t injections of vehicle or choline (1, 3.2, 10, 32 or 100 mg/kg) and 20 min later were given an 

i.pl. injection of formalin. Dose response curves were also obtained after coadministration of 

PNU-120596 and choline (ED50 Mix) in fixed-ratio combinations based on fractions of their 

respective ED50 values.  The ratio of PNU-120596 and choline was 1:7.2 (see Table 1). In the 

drug combination experiments, mice received one injection of each drug: PNU-120596 (i.p.) was 

administered first, followed 15 min later by a choline (i.t.) injection. Formalin (i.pl.) was 

administered 5 min after the choline injection. For the ED50 values estimation, data were 

expressed as % MPE = (licking time, vehicle – licking time, test drug)/(liking time, vehicle) x 

100. 

For the interactions studies of PNU-120596 with other agonists, PNU-120596 was 

administered via i.p., whereas nicotine, PHA-543613 and morphine were given via s.c. injection. 

Nicotine was given 5 min after PNU-120596 treatment. PHA-543613 and morphine were given 

15 min after PNU-120596 treatment.  
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3.2.3.2 Tail-Flick Test  

The antinociceptive effect of drugs was assessed by the tail-flick method, as described in 

chapter II. Groups of 6 animals were used for each dose and for each treatment. Interaction 

studies were carried out by pretreating the mice with either vehicle or PNU-120596 15 min 

before vehicle or nicotine (0.5 and 2.5 mg/kg s.c.) and animals were tested 5 min later.  

3.2.3.3 Hot-Plate Test 

The hot-plate test was utilized as described in chapter II. Interaction studies were carried 

out by pretreating the mice with either vehicle or PNU-120596 15 minutes before vehicle or 

nicotine (0.5 and 2.5 mg/kg s.c.) 5 minute pretreatment.  

3.2.4 Body Temperature Measure 

Rectal temperature was measured by a thermistor probe (inserted 24 mm) and digital 

thermometer (YSI Inc., Yellow Springs, OH). In this set of experiments readings were taken just 

before and 30 min after the last injection. In the first experiment, mice were pretreated with an 

s.c injection of either vehicle or nicotine (0.5, 1 or 2.5mg/kg) and were tested 30 min later. PNU-

120596 was given 15 min before nicotine treatment. In the second experiment mice were 

pretreated with either vehicle or different doses of PNU (1, 4 or 8 mg/kg, i.p.), and 15 min later 

they received s.c injection of veh or nicotine 0.5 mg/kg. Mice were tested 30 min after the 

second injection. In the third experiment mice were pretreated 15 min with either vehicle or 

PNU-120596 and tested 15 min after a second injection of either vehicle or PHA-543613. 

Antagonism studies were carried out by pretreating the mice with either vehicle or MLA 

(10mg/kg) 10 min before vehicle or PNU-120596 (8mg/kg). Followed by a 15 min pretreatment 

of vehicle or PNU-120596, the animals were tested 30 min after administration of a 
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subcutaneous dose of 0.5 mg/kg of nicotine. The difference in rectal temperature before and after 

treatment was calculated for each mouse.  The ambient temperature of the laboratory varied from 

21 to 24°C from day to day. 

3.2.5 Locomotor Activity Test 

Mice were placed into individual Omnitech photocell activity cages (28 x 16.5 cm) after 

the pretreatment of either i.p. vehicle or PNU-120596 (8mg/kg) and an s.c. injection of either 

vehicle or nicotine (0.1, 0.5, and 1mg/kg). The initial pretreatment, of PNU-120596 or vehicle, 

was given 15 minutes before the second pretreatment, of either vehicle or nicotine, which was 

administered 5 minutes before the test. Interruptions of the photocell beams (two banks of eight 

cells each) were then recorded for the next 30 min. Data are expressed as number of photocell 

interruptions. 

3.2.6 Seizure Testing 

After an s.c. pretreatment injection of either vehicle or nicotine (3, 5 and 9 mg/kg), each 

animal was immediately placed in a 30x3x30 cm3 Plexiglas cage for 3 min, after which mice 

were observed for 7 min. The interaction study between PNU-120596 and nicotine was carried 

out by pretreating the mice i.p with PNU-120596 15 min before nicotine. The occurrence or 

absence of a clonic seizure was noted for each animal over a 7-min time period after the s.c. 

administration of nicotine. This time was chosen because seizures occur very quickly after 

nicotine administration. The percentage of animals exhibiting a seizure was calculated.  

3.2.7 Intrathecal Injections  

Injections were administered as described in chapter II.  
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3.2.8 Statistical Analysis  

Results are expressed as mean ± standard error of the mean (SEM) or as ED50 values with 

95% confidence limits. The data obtained were analyzed using GraphPad® software program. 

Statistical analysis was done by one-way analysis of variance test ANOVA followed by post hoc, 

Tukey test. P-values less than 0.05 (P < 0.05) were considered significant. The ED50 values with 

95% confidence intervals were calculated using standard linear regression analysis of the dose-

response curve for each drug alone or in combination. To determine the ED50 values, the 

antinociceptive activity (reduction in paw licking) was calculated as a %MPE using the 

following equation: %MPE = 100*((mean paw licking in control group)–(mean paw licking in 

drug(s) treated group))/mean of paw licking in control group).  

Isobolographic analysis was used to determine the nature of the drug interactions, as 

described previously (Tallarida, 2000). The dose of PNU-120596 required to elicit a 50% effect 

was plotted on the abscissa, and the isoeffective dose of choline was plotted on the ordinate. The 

theoretical additive effect of the two drugs was represented by the straight line connecting the 

two points. If the experimentally determined data points and their confidence interval lie on this 

line, the drug effects are considered additive. If the points lie below this line, the interaction is 

considered to be superadditive (synergistic); however, if they lie above the line of additivity, the 

interaction is defined as subadditive (antagonistic). To determine whether the interaction 

between two drugs was synergistic, additive, or antagonistic, the theoretical additive ED50 value 

of the two drugs combined (referred to as Zadd) was calculated from the dose-response curves of 

each drug administered individually, in which the combination is assumed to equal the sum of 

the individual effects of each drug. The experimental ED50 value of the two drugs in combination 

(referred to as Zmix) in which the two drugs were summed at each concentration was then 
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determined by linear regression. If the experimentally determined Zmix value is significantly 

(p<0.05) lower than the predicted Zadd value, the drugs were said to act synergistically. 

3.3 Results 

3.3.1 Dose-response Analysis of PNU-120596 and Choline Alone and Their Combinations in the 

Formalin Test 

Intraplantar injection of formalin into the mouse's hind paw resulted in a reliable biphasic 

licking response induced by a tonic biphasic inflammatory response. PNU-120596 (i.p) and 

choline (i.t.) dose-dependently reduced formalin nociceptive behaviors in both phase I and II.  

Figure 19 (A & B) shows the dose-response curves for the antinociceptive effects of PNU-

120596 in phase I [F (5,49) = 14.57, p < 0.0001] and phase II [F(5,49) = 54.43, p < 0.0001] and 

choline phase I [F (5.49) = 21.16, p < 0.0001] and phase II [F (5, 49) = 64,91, p < 0.0001] alone in 

mice. The ED50 values and 95% confidence limit for PNU-120596 and choline in phase II were 

2.61 (2.13-3.19) and 18.90 (14.79-24.17) mg/kg, respectively as shown in Table 1.  
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(A) 

                                   

(B) 

 

 

 

Figure 19. Effects of α7 type II PAM PNU-120596 and α7 nicotinic agonist choline alone in 
the mouse formalin test of persistent pain.  
Dose-response curves of PNU-120596 and choline on (A) phase I and (B) phase II in the 
formalin test. Mice were treated with either vehicle or PNU-120596 (15 min, i.p.) or vehicle or 
choline (5 min, i.t.). Testing occurred immediately after the formalin injection. Each point 
represents the mean ± S.E.M of total time spent licking for 6-8 mice per group and *denotes 
p<0.05 vs. vehicle.  Veh = vehicle. 
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Table 1 

Treatment (Alone or Mixture) 

[PNU: mg/kg | Choline: µg/5µL] 

Mixture 
Ratio 

Theoretical ED50 

[Zadd (95% CL)] 

Experimental ED50 

[Zmix (95% CL)]  

     PNU Alone ----- ----- 2.61 (2.13-3.19) 

     Choline Alone ----- ----- 18.90 (14.79-24.17) 

     PNU-120596  

     (in PNU-120596 + Choline Mixture) 
----- ----- 0.47 (0.28-0.78) 

                    0.32                         

                    1.0                  

                    3.2                       

                    10                      

     Choline  

     (in PNU-120596 + Choline Mixture) 
----- ----- 3.44 (2.36-4.99) 

                    2.32                         

                    7.2                  

                    23.2                       

                    72                      

     PNU-120596 + Choline 1:7.2 10.76 (8.71-
13.18) 

3.92 (2.70-5.68) 

                    0.32 + 2.32    

                      1.0 + 7.2    

                      3.2 + 23.2    

                       10 + 72    

Table 1. Fixed combinations of PNU-120596 and choline produced synergistic antinociceptive 
effects in the formalin test. Predicted additive ED50 values (Zadd) and experimentally determined 
ED50 (Zmix) values for the interaction of PNU-120596 and choline. Doses for each drug or drug 
interaction are presented in the first column.  
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3.3.2 Dose-response Analysis of PNU-120596 and Choline Alone and Their Combinations in the 

Formalin Test 

Shown in Figure 20 (A & B) is the 1:7.2 combination of PNU-120596 and choline, with 

the dose of PNU-120596 plotted on the abscissa. The dose-response curve of choline alone is 

plotted in this graph for comparison. The same data are also plotted in Figure 20 (C & D), with 

the dose of choline plotted on the abscissa.  The dose-response curve of PNU-120596 alone is 

included in this graph for comparison.  The combination of PNU-120596 with choline resulted in 

leftward shift of the dose-response curve with regard to choline only.  The interaction between 

PNU-120596 (i.p., 15 min before the formalin injection) and choline (i.t., 5 min before the 

formalin injection) was assessed by an isobolographic analysis. The plots of the experimental 

combination ED50 values for both fixed rations in relation to the ED50 values of the drugs alone 

are shown in Figure 21. The isobologram graphic suggests that a synergistic interaction occurs 

between PNU-120596 and choline since the experimental ED50 is located below the additive 

dose line. The synergistic interaction between PNU-120596 and choline is confirmed by 

statistical analysis of the predicted additive ED50 values (Z add) and experimentally derived ED50 

values (Z mix) as shown in Table I. The ratio tested showed that Z mix value is significantly less 

than the Z add value. These data indicate that the interaction between the antinociceptive actions 

of PNU-120596 and choline synergistic in the formalin test. 
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Figure 20. Effects of the interaction of PNU-120596 with choline in the formalin test, with 
respect to each drugs dose.  
Dose-response curves for PNU alone and in combination with choline in (A) phase I and (B) 
phase II in the formalin test, plotted against the doses of PNU-120596. Mice treated with either 
vehicle or PNU-120596 15 min before vehicle or choline, which was given 5 min before 
formalin (i.pl.). Dose-response curves for choline alone and in combination with PNU-120596 in 
(C) phase I and (D) phase II in the formalin test, plotted against choline doses. Testing occurred 
immediately after the formalin injection. Each point represents the mean ± S.E.M of total time 
spent licking for 6-8 mice per group and *denotes p<0.05 vs. vehicle.  Veh = vehicle. 
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Figure 21. ED50 isobologram for the interaction of PNU-120596 and choline in the formalin 
test.   
The ED50 values for PNU-120596 and choline are depicted on the x- and y-axes, respectively. 
The experimental ED50 values of mixtures of PNU-120596 and choline at fixed-ratio 
combinations of 1:7.2, with 95% confidence intervals, were significantly below the theoretical 
isobole of additivity (see Table 1), indicating a synergistic interaction. Each point represents the 
mean ± SEM for 6 animals. *p < 0.05, compared with control mice given vehicle. Zmix 
corresponds to experimental ED50 ± SEM of the combination with 95% confidence limits.  
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3.3.3 PNU-120596 Enhances PHA-543613’s Effects in the Formalin Test 

Since PNU-120596 was shown to enhance the antinociceptive effect of choline, an 

endogenous α7 nAChR agonist, we evaluated if it also enhances the effect of an exogenous 

selective α7 nAChR agonist, such as PHA-54613. Therefore, we tested PNU-120596 and PHA-

54613 for their effects, separately and in combination, in the formalin test.  Low doses of PNU-

120596 (0.5 mg/kg i.p.) and PHA-543613 (1.0mg/kg i.p.), both administered alone and given 15 

min before formalin, did not produce significant antinociceptive effects in phases I [F(2,18) = 

2.449, p = 0.1146] and II [F(2,17) = 0.4704, p = 0.6327] of the formalin test (Figure 22A & B). On 

the other hand, pretreatment with PNU-120596 significantly potentiated PHA-543613’s effects 

in both phase I [F(3,22) = 23.72, p < 0.0001] and phase II [F(3,22) = 9.468, p = 0.0003] of the 

formalin test (Figure 22A & B).  
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Figure 22. PNU-120596 enhances PHA-543613’s effects in the formalin test.  Mice received 
vehicle or PNU-120596 (0.5 mg kg-1, i.p.) and 15 min later PNU-120596 (0.5 mg kg-1, s.c.).  
They were tested in the formalin test 15 min later. Paw-licking time was measured in both (A) 
phase I and (B) phase II of the test. Data are expressed as means ± SEM; n = 6 mice per group. 
*p<0.05 vs. control group.  
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3.3.4 PNU-120596 Enhances Nicotine’s Effects in the Formalin Test 

To further explore the interaction between PNU-120596 and nicotinic agents, PNU-

120596’s effects on nicotine’s antinociception in the formalin test were also studied.  As shown 

in Figure 23 (A & B), neither PNU-120596 (0.5mg/kg i.p.), administered 15 min before 

formalin, nor nicotine (0.05mg/kg s.c.), administered 5 min before formalin, induced significant 

antinociceptive effects in phase I [F(3,21) = 0.610, p = 0.3218] or II [F(3,21) = 1.029, p = 0.3746] on 

their own in the formalin test. However, pretreatment of mice with PNU-120596 significantly 

enhanced nicotine’s effects in the phase I [F(3,28) = 13.59, p < 0.0001] and II [F(3,25) = 34.64, p < 

0.0001] of the formalin test (Figure 23A & B). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

	
   90	
  

(A) 

                                        

(B) 

 

Figure 23. PNU-120596 enhances nicotine’s effects in the formalin test. Mice received 
vehicle or PNU-120596 (0.5 mg kg-1, i.p.) and 15 min later nicotine (0.05 mg kg-1, s.c.).  They 
were tested in the formalin test 5 min later. Paw-licking time was measured in both (A) phase I 
and (B) phase II of the test. Data are expressed as means ± SEM; n = 6 mice per group. *p<0.05 
vs. control group. 
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3.3.5 PNU-120596 Failed to Enhance Morphine’s Effects in the Formalin Test 

Considering the implication of µ-opioid receptors in nociception, we investigated the 

interaction between PNU-120596 and morphine in the formalin test. Neither a single 

pretreatment (15 min) injection of PNU-120596 (1mg/kg, i.p.) nor a pretreatment (10 min) 

injection of morphine (0.5mg/kg, s.c.) produced a significant antinociceptive effect in formalin 

phases I [F(2,13) = 0.5056, p = 0.6145] and II [F(2,13) = 0.5056, p = 0.6145], compared to the 

vehicle group.  To then assess the effect of PNU-120596 on morphine, mice were injected with 

PNU-120596 15 min (1mg/kg, i.p.) before they were injected with morphine (0.5 mg/kg, s.c.), 

which was given 15 min before the formalin injection (i.pl.).  As shown in Figure 24 (A & B), 

interaction of ineffective doses of PNU-120596 and morphine did not produce antinociceptive 

effects in either phase I [F(3,19) = 0.3993, p = 0.7551] or phase II [F(3,19) = 0.09381, p = 0.9625] of 

the formalin test.  
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(A) 

 

(B) 

 

 

Figure 24. PNU-120596 did not enhance morphine’s effects in the formalin test. Mice 
received vehicle or PNU-120596 (0.5 mg kg-1, i.p.) and 15 min later morphine (0.5 mg kg-1, s.c.).  
They were tested in the formalin test 15 min later. Paw-licking time was measured in both (A) 
phase I and (B) phase II of the test. Data are expressed as means ± SEM; n = 6 mice per group. 
*p<0.05 vs. control group. 
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3.3.6 The Effects of PNU-120596 on Nicotine-induced Antinociception 

To further assess the interaction between PNU-120596 and nicotine, we determined the 

effects of PNU-120596 on various pharmacological responses after acute injection of nicotine in 

mice.  

We first assessed the effects of PNU-120596 on nicotine-induced antinociception in acute 

thermal pain models using the tail-flick and hot-plate tests.  A 15 min pretreatment of PNU-

120596 (8 mg/kg) or a 5 min pretreatment of nicotine (0.5 mg/kg) showed no significant 

antinociceptive effects in the [F(3,22) = 0.5612, p = 0.6463]  tail-flick  and [F(3,20) = 2.000, p = 

0.1465] hot-plate tests when compared to vehicle. In contrast, a 5 minute pretreatment of a 

higher dose of nicotine (2.5 mg/kg) induced significant antinociceptive effects in the tail-flick 

[F(5,32) = 16.91, p < 0.0001] and hot-plate tests [F(5,30) = 15.83, p < 0.0001] when compared to 

vehicle (Figure 25 A&B).  To determine whether PNU-120596 enhanced or blocked the 

antinociceptive effect of nicotine (0.5mg/kg s.c. and 2.5mg/kg s.c), mice were first pretreated (15 

min) with PNU-120596 (8mg/kg i.p.) and then pretreated (5min) with nicotine (0.5mg/kg s.c. or 

2.5mg/kg s.c).  Results shown in Figure 25 (A & B) demonstrate that the pretreatment with 

PNU-120596 failed to significantly alter nicotine’s responses in the tail-flick and hot-plate test. 
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Figure 25. PNU-120596 did not enhance nicotine’s antinociception in tail flick and hot-plate 
tests after acute administration. Effects of PNU-120596 on nicotine in the (A) tail-flick and 
(B) hot-plate tests.  Mice received vehicle or PNU-120596 (8mg kg-1, i.p.) and 15 min later 
nicotine (0.5 or 2.5 mg kg-1, s.c.).  They were tested in the tail-flick and hot-plate tests 5 min 
later.  Each point represents the mean ± S.E.M of total time spent licking for 6 mice per group 
and * denotes p<0.05 vs. vehicle.  Veh = vehicle. 
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3.3.7 The Effects of PNU-120596 on Nicotine-decrease in Locomotion, Seizures and 

Hypothermia 

We then determined the effects of PNU-120596 on nicotine-induced decrease in 

locomotor activity in mice. Consistent with previous reports, nicotine produced a significant, 

dose-dependent reduction in motor activity (Berrendero et al., 2005; Damaj, 2001) (Figure 26A). 

A pretreatment of PNU-120596 (8 mg/kg) did not induce a significant shift in the nicotine dose-

response curve compared to vehicle-treated group [ED50 (±CL) values are 0.23 (0.07-0.73) and 

0.33 (0.1-0.94) mg/kg for vehicle and PNU-120596-treated groups, respectively] (Table II). A 

similar lack of significant effects of PNU-120596 on nicotine-induced seizures (Figure 26B) was 

also observed [ED50 (±CL) values are 6.4 (4.3-9.5) and 7.1 (6.4-7.7) mg/kg for vehicle and PNU-

120596-treated groups, respectively] (Table II).  

We finally investigated the effects of PNU-120596 on nicotine-induced hypothermia. 

Consistent with previous reports (Damaj et al., 1996), acute nicotine produced a significant and 

dose-dependent reduction in body temperature in mice (Figure 26C).  While pretreatment of 

PNU-120596 (8 mg/kg) did not produce a significant leftward shift in the dose-response curve 

for nicotine-induced hypothermia [ED50 (±CL) values are 0.47 (0.28-0.78) and 0.18 (0.09-0.35) 

mg/kg for vehicle and PNU-120596-treated groups, respectively] (Table II), significant 

interaction was found with the low dose of nicotine. As shown in Figure 26C, PNU-120596 (8 

mg/kg i.p.), administered 15 min before 0.5 mg/kg of nicotine, induced a significant 

hypothermia.  The enhancement of nicotine’s effects disappeared at the higher doses of nicotine. 

On its own PNU-120596 (8 mg/kg i.p.) did not induce a significant change in the body 

temperature of mice compared to vehicle (Figure 26C). 
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Figure 26. Effects of PNU-120596 on nicotine-induced locomotor activity depression, 
seizure occurrence and hypothermia. The effects of PNU-120596 (8mg kg-1, i.p.) on nicotine’s 
actions on (A) locomotor activity, (B) seizure occurrence and (C) body temperature measure in 
mice. Animals were treated with vehicle or PNU-120596 15 min before nicotine.  Changes in 
locomotor activity and seizure occurrence were measured 5 min later. Changes in body 
temperature were measured 30 min later. Each point represents the mean ± SEM of 6 mice. The 
asterisks denote the significance levels when compared with the control group: *p < 0.05. 
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Table 2 

 

 

Table. 2.  Summary of the potencies of various acute nicotine responses after pretreatment with 
PNU-120596.  Potency is expressed as ED50 ± confidence limits (mg/kg). Each group contained 
6 mice. 
 

 

 

 

 

 

 

 

 

 

 
ED50 (95% confidence limits) 
(mg/kg) 

Response Vehicle PNU-120596 

Spontaneous Activity 0.23 (0.07 – 0.73) 0.33 (0.1 – 0.94) 

Seizures 6.4 (4.3 – 9.5) 7.1 (6.4 – 7.7) 

Hypothermia 0.47 (0.28 – 0.78) 0.18 (0.09 – 0.35) 
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3.3.8 Characterization of nicotine-induced hypothermia in the presence of PNU-120596 

Having found the effect of PNU-120596-pretreated nicotine to be significantly different 

from the effect of just nicotine at a dose of 0.5 mg/kg, but not at 1.0 and 2.5 mg/kg, in the body 

temperature test, we chose this dose to further evaluate the interaction between PNU-120596 and 

nicotine.  Mice were pretreated with various doses of PNU-120596 (1, 4 and 8 mg/kg i.p.) and 15 

min later, injected with nicotine (0.5 mg/kg s.c.). Thirty min later changes in their body 

temperatures were measured.  On their owns, PNU-120596-, nicotine-, or vehicle-pretreated 

mice did not induce significant changes in body temperature [F(4,21) = 2.059, p = 0.1226].  In 

contrast, PNU-120596 dose-dependently enhanced nicotine-induced hypothermia [F(7,37) = 17.57, 

p < 0.0001] (Figure 27A). The enhancement of PNU-120596 of nicotine’s hypothermic effects 

was mediated by α7 nAChRs.  Indeed, MLA, an α7 nicotinic antagonist, blocked the effects of 

PNU-120596 on nicotine.  As shown in Figure 27B, MLA (10 mg/kg, s.c.) given 5 min before, 

blocked the enhancement of nicotine-induced hypothermia (0.5 mg/kg s.c.) by PNU-120596 (8 

mg/kg i.p.) [F(6,32) = 14.34, p < 0.0001].  On their own, PNU-120596-, nicotine-, vehicle-, or 

MLA-pretreated mice did not induce significant changes in body temperature [F(3,18) = 2.828, p = 

0.0677].  

Interestingly and in contrast to α7 PAM PNU-120596, the α7 nAChR agonist PHA-

543613 (8 mg/kg s.c.) failed to enhance the effects of nicotine (0.5 mg/kg s.c.) on body 

temperature [F(3,18) = 2.317, p = 0.1100] (Figure 27C).  However, the combination of PNU-

120596 and PHA-543613, produced significantly different hypothermic effects [F(5,29) = 5.054, p 

= 0.0019], suggesting that PNU-120596 enhances the effect of PHA-543613 on body 

temperature (Figure 27C).  
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Figure 27. PNU-120596 enhanced the effect of nicotine-induced hypothermia. 
(A) Effects of different doses of PNU-120596 (1, 4 and 8mg kg-1, i.p.) on nicotine-induced 
hypothermia (0.5mg kg-1, s.c.). Mice were treated with either vehicle or PNU-120596 15min 
before vehicle or nicotine. Body temperatures were measured 30 min after nicotine. (B) The 
effects of MLA on PNU-120596 enhanced nicotine-induced hypothermia.  Mice were treated 
with vehicle or MLA (10mg kg-1, s.c.) 15 min before PNU-120596 (8mg kg-1, s.c.).  Mice were 
then injected with nicotine (0.5mg kg-1, s.c.) 15 min after PNU-120596 or vehicle.  Changes in 
body temperature were measured 30 min later. (C) Interaction of PHA-543613 (8mg kg-1, s.c.) 
with nicotine (0.5mg kg-1, s.c.) or PNU-120596 (8mg kg-1, i.p.). Mice were treated with vehicle, 
PNU-120596 or PHA-543613 15 min before vehicle, PHA-543613 or nicotine. Body 
temperatures were measured 30 min after the first drug. Each point represents the mean ± SEM 
of 6 mice. The asterisks denote the significance levels when compared with the control group: *p 
< 0.05. 
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3.4 Summary of Chapter III Results 

Characterizing PNU and choline separately, we found that both PNU and choline dose-

dependently reduced formalin-induced pain behaviors in both phases of the formalin test. The 

ED50 (95% confidence limits) values PNU-120596 and choline in phase II were 2.61 (2.13-3.19) 

and 18.90 (14.79-24.17) mg/kg. Subsequently, evaluating the interaction of PNU-120596 with 

choline, we showed a leftward shift in the dose-response curve of choline. An isobolographic 

analysis, paired with a comparison of predicted and experimentally-derived ED50 values, 

confirmed the synergistic nature of the interaction between PNU-120596 and choline. 

Furthermore, PNU-120596 was found to enhance PHA-543613’s and nicotine’s, but not 

morphine’s, effects in the formalin test.  

Additionally, PNU-120596 did not significantly affect the nicotine dose-response curve 

with respect to nicotine-induced decreased locomotor activity or seizures. In contrast, PNU 

interacting with lowest dose of nicotine (0.5 mg/kg) induced a significant hypothermic effect. 

Moreover, this enhancement was blocked by the α7 nAChR antagonist MLA, suggesting that 

PNU-120596-enhancement of nicotine-induced hypothermia was α7 nAChR-mediated. Lastly, 

the interaction of PNU-120596 and PHA-543613, compared to PHA-543613 or vehicle alone, 

significantly enhanced hypothermia, while PHA-543613 did not enhance nicotine-induced 

hypothermia.  
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CHAPTER IV 

Effects of Alpha 7 Positive Allosteric Modulators in Murine Inflammatory and Chronic  

Neuropathic Pain Models 

 

4.1 Chapter IV Introduction 

Chronic neuropathic pain arguably arises due to long-term plasticity changes in 

somatosensory pathways from the periphery to the cortex. These plasticity changes often occur 

after nerve injury and/or dysfunction in the CNS, resulting in significantly enhanced pain 

sensation (hyperalgesia) or in otherwise non-noxious stimuli to cause pain (allodynia) (Wang et 

al., 2011; Zhuo, 2007 and Harden, 2005). Increased pain sensitivity, one of the most common 

signs of an inflammatory disorder, is mediated by a host of different factors, including enzymes, 

neuropeptides, eicosanoids, chemokines and cytokines (Dray and Bevan, 1993; Wang et al., 

2011) 

Previous studies suggest utility of nAChR agonists to treat chronic pain conditions 

(Vincler, 2005; Khan et al., 2003; Miao et al., 2004). Recent work has focused on the role of the 

α7 receptors in modulating inflammation and nociception (Westman et al., 2010; Marrero and 

Bencherif, 2009; Medhurst et al., 2008). In addition to their neuronal presence, α7 receptors are 

expressed on macrophages (Tracy et al., 2002; Wang and Wang, 2003; Ulloa et al., 2005), which 

are key immune cells involved in the initiation, maintenance, and resolution of inflammation 

(Fujiwara and Kobayashi, 2005). Previous studies have demonstrated the importance of ACh 

directly interacting with α7 nAChRs expressed on macrophages and other cytokine-producing 

cells in down-regulating proinflammatory cytokine synthesis and preventing tissue damage 

(Tracey, 2002; Wang et al., 2009). In addition, Xiao et al. (2002) showed an up-regulation of α7 
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subunit expression in the rat dorsal root ganglion fourteen days after sciatic nerve axotomy. 

Moreover, α7 agonists elicited significant anti-inflammatory and antinociceptive effects in 

rodent models of chronic neuropathic pain and inflammation (Gurun et al., 2009; Wang et al., 

2005; Medhurst et al., 2008; Hamurtekin and Gurun, 2006; Damaj et al., 2000). Consequently, 

the α7 nAChR represents a promising target for the development of analgesic and anti-

inflammatory agents.  

Thus, in the present study, we evaluated whether potentiating the endogenous α7 

cholinergic system through the allosteric modulation of α7 nAChRs produces anti-inflammatory, 

anti-hyperalgesic and anti-allodynic effects in mouse models of inflammation and chronic 

neuropathic pain. Accordingly, NS1738 (a type I α7 nAChR PAM) and PNU-120596 (a type II 

α7 nAChR PAM) were evaluated in the carrageenan short-term inflammatory pain and the CCI 

neuropathic pain models. In addition, we evaluated whether PNU-120596 enhances the 

antinociceptive effects of a selective α7 nAChRs agonist, PHA-543611, in these models.  

4.2 Materials and Methods 

4.2.2 Animals 

Naïve male adult ICR (Harlan Laboratories; Indianapolis, IN) and C57BL/6J (Jackson 

Laboratories: Bar Harbor, ME) mice weighing between 20 and 30 g served as subjects. All other 

animal parameters including housing, care and demographics were the same as described in 

chapter II. 
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4.2.3 Drugs 

 MLA was purchased from RBI Natick, MA). PNU 120596 [1-(5-Chloro-2,4-dimethoxy-

phenyl)-3-(5-methyl-isoxazol-3-yl)] and PHA-543613 were obtained from the National Institute 

on Drug Abuse (NIDA) supply program. NS 1738 [N-(5-Chloro-2-hydroxyphenyl)-N'-[2-chloro-

5-(trifluoromethyl)phenyl] was purchased from Tocris Biosciences (Minneapolis, MN). All 

drugs except for PNU-120596 and NS1738 were dissolved in physiological saline (0.9% sodium 

chloride) and injected subcutaneously (s.c.) in a volume of 1ml/100 g body weight unless noted 

otherwise. PNU 120596 and NS1738 were dissolved in vehicle consisting of 1 volume ethanol, 1 

volume Emulphor-620 (Rhone-Poulenc, Inc., Princeton, NJ) and 18 volumes distilled water, and 

injected via the (i.p.) route of administration. Doses of NS1738 and PNU-120596 were chosen 

based on their activity in in vivo models of memory and cognition (Timmermann et al., 2007; 

Christensen et al., 2010).  Lambda-carrageenan was purchased from Sigma-Aldrich and 

dissolved in saline. All doses are expressed as the free base of the drug.  

4.2.4 Intrathecal Injections 

 Injections were administered as described in chapter II.  

4.2.5 Prolonged Pain Models 

4.2.5.1 Carrageenan Model of Short Inflammatory Pain  

These procedures have been previously described by (Cravatt et al., 2004; Lichtman et al., 2004). 

Briefly, edema was induced by giving an intraplantar injection of 0.5% lambda-carrageenan in a 20 µl 

volume into the hind right paw using a 301/2 gauge needle. Saline (20 µl) was injected into the left hind 

paw. 
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 Carrageenan-induced inflammatory pain was tested by measuring paw edema. The 

thickness of the carrageenan-treated and control paws were measured both before and after 

carrageenan injection at the time points indicated in Results, using digital calipers (Traceable 

Calipers, Friendswood, TX).  Data were recorded to the nearest ± 0.01mm and expressed as 

change in paw thickness ΔPT = right paw thickness – left paw thickness.  

Thermal hyperalgesia was also used to measure carrageenan-induced inflammatory pain.  

Mice were placed in clear plastic chambers (7 cm x 9 cm x 10 cm) on an elevated glass surface 

and allowed to acclimatize for at least 30 min before testing. The infrared beam of a radiant heat 

source was directed at the plantar surface of each hind paw, in the area immediately proximal to 

the toes. A 20-second cut-off time was used. Three measures of paw withdrawal latency were 

taken and averaged for each hind-paw using the Hargreaves test (Yalcin et al., 2011). The paw 

withdrawal latency was defined as the time from the onset of radiant heat to withdrawal of the 

animal’s hind paw (Lichtman et al., 2004). Withdrawal thresholds were measured in each hind 

paw. Results were expressed as ΔPWL (sec) = ipsilateral latency - contralateral latency. Paw 

edema and thermal hyperalgesia were both used in the following protocols.  

Determining the effects of NS1738 and PNU-120596 on developing inflammation after 

carrageenan injection 

NS1738 or vehicle was administered 15 min prior to an i.pl. injection of carrageenan and 

then mice were tested 6 h after the injection, whereas for PNU-120596, drug was injected 15 

prior to an i.pl. injection of carrageenan and then mice were tested 15 min and 1, 6 and 24 h after 

the carrageenan injection. For the antagonist study, MLA was injected via i.t. 5 min or s.c. 10 

min prior to a PNU-120596 injection, which was followed 15 min later with carrageenan and 
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then mice were tested 6 h after the last injection.  

Effect of PNU-120596 on reversing carrageenan-induced thermal hyperalgesia and paw edema  

To determine whether PNU-1209596 can reduce established thermal hyperalgesia and 

paw edema after carrageenan injection, paw withdrawal latency and paw diameter were 

measured after the establishment of thermal hyperalgesia or paw edema, respectively (3 h after 

carrageenan administration). Subsequently, a treatment of either vehicle or PNU-120596 

(8mg/kg, i.p.) was administered 3 h after carrageenan, and paw withdrawal latency and paw 

diameter were measured 15 min, 1 h, and 3 h after either treatment.  

4.2.5.2 Chronic Constriction Injury (CCI) 

Mice were anesthetized with pentobarbital (45 mg/kg, i.p.). An incision was made just 

below the hipbone, parallel to the sciatic nerve. The right common sciatic nerve was exposed at 

the level proximal to the sciatic trifurcation, and a nerve segment 3-5 mm long was separated 

from surrounding connective tissue. Two tight ligatures of 6-0 silk suture, spaced 1.0-1.5 mm 

apart, were made around the nerve. Skin and muscles were closed with suture. This procedure 

resulted in chronic constrictive injury of the ligated nerve. In sham-operated controls, an 

identical surgical incision was performed on the same paw, except that the sciatic nerve was not 

ligated. For the purposes of this paper, the paw that underwent surgery will be referred to as the 

ipsilateral paw, and the paw that did not undergo surgery will be referred to as the contralateral 

paw. After surgery, mice were allowed to recover in a warmed cage on clean paper towels and 

then returned to their home cage after regaining consciousness. Any suture that remained after 

two weeks was removed from the healed surgical wound. We assessed both thermal hyperalgesia 

and mechanical allodynia in CCI mice via the Hargreaves test and von Frey filaments test, 
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respectively.  

 Mechanical allodynia thresholds were determined according to the method of Chaplan et 

al. (1994). Mice were placed in a Plexiglas cage with mesh metal flooring and allowed to 

acclimate for 30 min before testing. A series of calibrated von Frey filaments (Stoelting, Wood 

Dale, IL) with logarithmically incremental stiffness ranging from 2.83 to 5.88 expressed 

dsLog10 of [10 £ force in (mg)] were applied to the paw with a modified up-down method 

(Dixon, 1965). In the absence of a paw withdrawal response to the initially selected filament, a 

thicker thicker corresponding to a stronger stimulus was presented. In the event of paw 

withdrawal, the next weaker stimulus was chosen. Each hair was presented perpendicularly 

against the paw, with sufficient force to cause slight bending, and held 2–3 s. The stimulation of 

the same intensity was applied 5 times to the hind paw at intervals of a few seconds. The 

mechanical threshold was expressed as Log10 of [10 £ force in (mg)], indicating the force of the 

Von Frey hair to which the animal reacted (paw withdrawn, licking or shaking).  

 Thermal hyperalgesia, as measured via the Hargreaves test as described earlier in the 

context of carrageenan, and mechanical allodynia were used in the following protocols.   

Determining the Effects of NS1738 and PNU-120596 on CCI-induced Neuropathic Pain 

 In the CCI model of neuropathic pain, mice were pretreated with either vehicle or 

NS1738, and then tested 15 min and 1, 3 and 6h later in the Hargreaves plantar stimulator test. 

The other group of mice was pretreated with vehicle or different doses of PNU-120596 and then 

tested 15 min and 1, 6 and 24 h later in the Hargreaves plantar stimulator test. In regard to the 

sham group; mice were pretreated with either vehicle or PNU-120596 and then tested 3 h later in 

the Hargreaves plantar stimulator test. For the antagonist study, mice were pretreated with MLA 
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i.p and then, 10 min later, were administered PNU-120596, and were tested in the Hargreaves 

plantar stimulator test 15 min later.  

Determining the Effects of NS1738 and PNU-120596 on CCI-induced Mechanical Allodynia 

 Mechanical stimuli thresholds were determined for each animal after 15min, 3 and 6 h 

after the injection of NS1738 or PNU-120596 in the mice that had CCI surgery. To determine 

whether PNU-120596 enhances the effects of the selective α7 agonist PHA-543613, PHA-

543613-treated mice were given a 15 min pretreatment of PNU-120596 and were tested 30 min, 

3 and 6 h after the PHA-543613 injection.  

4.2.6 Locomotor Activity 

 Mice were placed into individual Omnitech photocell activity cages (28 x 16.5 cm) after 

15 min after the i.p. administration of vehicle, NS1738 or PNU-120596 at different doses.  

Interruptions of the photocell beams (two banks of eight cells each), which assess walking and 

rearing, were then recorded for the next 30 min.  Data were expressed as the number of photocell 

interruptions.  

4.2.7 Motor Coordination 

We also evaluated the effect of PNU-120596, at doses that produce antinociceptive 

effects (8mg/kg, i.p.), in the rotarod test. In order to measure motor coordination, we used 

Rotarod (IITC Inc. Life Science). The animals are placed on textured drums (1¼ inch diameter) 

to avoid slipping.  When an animal falls onto the individual sensing platforms, test results are 

recorded.  Five mice were tested at a time using a rate of 4 rpm. Naive mice were trained until 

they remained on the rotarod for 5 min.  Animals that failed to meet this criterion within three 
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trials were discarded.  Fifteen min after the injection of vehicle or drugs, mice were placed on the 

rotarod for 5 min.  If a mouse fell from the rotarod during this time period, it was scored as 

motor impaired. Percent impairment was calculated as follows: % impairment = [(180-test 

time/180*100].  Mice were pretreated with either i.p. vehicle or PNU-120596 15 min before the 

test. 

4.2.8 Statistical Analysis  

The data obtained were analyzed using a GraphPad software program and expressed as 

the mean ± S.E.M.  Statistical analyses were done using student’s t test and one-way or repeated 

measures two-way analysis of variance (ANOVA) tests.  Tukey’s or Bonferroni’s tests were used 

for post hoc analysis. P-values less than 0.05 (p < 0.05) were considered significant. 

4.3 Results 

4.3.1 Effects of NS1738 and PNU-120596 on Developing Inflammation After Carrageenan 

Injection 

 Mice were given an i.pl. injection of carrageenan, then tested for hyperalgesia and edema 

6 h later. Anti-hyperalgesic and anti-edematous effects of the α7 nAChRs PAMs 15 min after 

i.p. administration were determined. The administration of 10 and 30 mg/kg of NS1738 15 min 

before i.pl. carrageenan blocked the development of hyperalgesic responses [F(2,27) = 9.07, p < 

0.01] (Figure 28A). However, at these doses NS1738 did not diminish the magnitude of paw 

edema [F(2,27) = 0.05, p = 0.95] (Figure 28B).  

 In contrast, administration of PNU-120596 15 min before an i.pl. carrageenan injection 

blocked hyperalgesic responses [F(2,15) = 17.26, p < 0.001] (Figure 28C) and significantly 
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diminished the magnitude of paw edema [F(2,15) = 20.46, p < 0.001] (Figure 28D) at 6 h after i.pl. 

carrageenan administration. 

 We next evaluated whether inhibition of α7 nAChRs would block PNU-120596’s effects 

on hyperalgesia and paw edema. A single s.c. injection of MLA (10mg/kg) given 10 min before 

i.p. PNU-120596 completely blocked the anti-hyperalgesic effects of PNU-120596 [F(3,36) = 

35.87, p < 0.001] (Figure 29A).  Similarly, MLA given 10 min before PNU-120596 completely 

antagonized PNU-120596 anti-edematous effects [F(3,36) = 13.35, p < 0.001] (Figure 29B). MLA 

(10 µg/mouse, i.t.), given 5 min before PNU-120596, also completely blocked PNU-120596’s 

anti-hyperalgesic F(3,36) = 12.84, p < 0.001] and anti-edematous [F(3,36) = 11.44, p < 0.001] effects 

(Figure 29C & D). 
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Figure 28. Carrageenan-induced hyperalgesia was reduced by NS1738 while both 
carrageenan-induced hyperalgesia and edema were reduced by PNU-120596.  
Mice were given an i.pl. injection of carrageenan, and hyperalgesia and paw-edema were 
assessed 6 hours later. (A) NS1738 (30mg/kg) at 15 min before carragennan injection 
significantly reduced hyperalgisia, but not paw-edema (B).  An i.p. injection of PNU-120596 
(4mg/kg) significantly reduced thermal hyperalgesia and paw edema 6 hours after a carrageenan 
injection (C & D), respectively. Baseline values for PWL and paw thickness were 11.5 s and 
4.06 mm in carrageenan-injected paws, respectively. Baseline values for control paws were 12.1 
s (PWL) and 2.15 mm (paw thickness).  *, p < 0.05 when compared to mice that were given an 
i.pl. injection of carrageenan and an i.p. injection of vehicle. N= six mice per group. Data are 
expressed as means ± S.E.M.  
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Figure 29. Effects of a single injection of the α7 nAChR antagonist MLA (s.c.) or (i.t.) on 
PNU-120596’s anti-hyperalgesic and anti-edematous effects.  
Mice were given an i.pl. injection of carrageenan, after which hyperalgesia and paw edema were 
assessed (6 h later).  PNU-120596 (4mg/kg), at 15 min before the carrageenan injection, 
significantly attenuated carrageenan-induced hyperalgesia. This anti-hyperalgesic effect was 
blocked by a pretreatment of α7 nAChR antagonist MLA (10mg/kg) 10 min before PNU-120596 
administration (A). PNU-120596 (4mg/kg) administration significantly attenuated carrageenan-
induced paw edema, and this effect was blocked by 10 min pretreatment with MLA, (10mg/kg) 
before PNU-120596 (B). PNU-120596’s anti-hyperalgesic effect was also blocked by a 
pretreatment of α7 nAChR antagonist MLA (10µg/mouse) 5 min before PNU-120596 
administration (C). PNU-120596 (4mg/kg) administration also significantly attenuated 
carrageenan-induced paw edema, and this effect was blocked by 5 min pretreatment with MLA, 
(10µg/mouse) before PNU-120596 (D).*, p < 0.05 when compared to mice that were given an 
i.pl. injection of carrageenan and an i.t. injection of vehicle. N= six mice per group. Data are 
expressed as means ± S.E.M.  
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4.3.2 Effect of PNU-120596 on Reversing Carrageenan-induced Thermal Hyperalgesia and Paw 

Edema  

 We then addressed the clinically relevant question of whether PNU-120506 can reverse 

carrageenan-induced thermal hyperalgesia and paw edema after they have been established. This 

is a particularly important question as anti-inflammatory agents are most often administered after 

inflammation has already occurred. Mice were administered i.pl. carrageenan and then, 3 h later, 

administered PNU-120596 (i.p.). Subsequently, mice were tested for thermal hyperalgesia and 

for paw thickness, at 15 min, 1 h and 3 h post-PNU-120596 treatment. As shown in Figure 30A, 

PNU-120596 reversed carrageen-induced thermal hyperalgesia at 15 min [t(10) = 2.542, p < 0.05], 

1 h [t(10) = 2.58, p < 0.05] and 3 h [t(10) = 5.36, p < 0.001] after the carrageenan injection. 

Likewise, as shown (Figure 30B) PNU-120596 attenuated carrageenan-induced paw edema at 15 

min [t(10) = 3.10, p < 0.05], 1h [t(10) = 5.55, p < 0.001] and 3h [t(10) = 2.47, p < 0.05] after the 

establishment of carrageenan (i.pl.)-induced thermal hyperalgesia. 
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Figure 30. Effect of PNU-120596 (8mg/kg, i.p) on established thermal hyperalgesia and paw 
edema after carrageenan injection.  
Thermal hyperalgesia and paw diameter was measured prior to and 3 h after carrageenan 
administration. Samples sizes were 6 mice per group. The mean ± S.E.M for the carrageenan-
administered thermal hyperalgesia group was 7 ± 0.7 for the vehicle group and 5.1 ± 0.7 for the 
group that received PNU-120596. Paw thickness means ± S.E.M were 1.7 ± 0.1 for the vehicle 
group and 1.4 ± 0.1 for the PNU-120596-treated group. (A) PNU-120596 significantly 
attenuated carrageenan-induced thermal hyperalgesia at 15 min, 1 and 3h after the establishment 
of carrageenan-induced thermal hyperalgesia. (B) Effects of PNU-120596 on carrageenan-
induced paw edema. PNU-120596 significantly reduced paw edema. PNU-120596 was 
administered 3 h after carrageenan was injected into the paw, then thermal hyperalgesia and paw 
diameter were measured after 15 min, 1 and 3 h following PNU-120596 injection. *, p < 0.05 
when compared to mice that had a right sciatic nerve constriction injury and were administered 
i.p. vehicle. N = six mice per group. Data are expressed as means ± S.E.M.  
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4.3.3 Effect of NS1738 on Thermal Hyperalgesia in the CCI Model 

 In the CCI model of neuropathic pain, NS1738 (30mg/kg) did not attenuate thermal 

hyperalgesia at any time point tested (Figure 31). Ten days after CCI surgery, change in paw 

withdrawal latencies (ΔPWL) in the NS1738-treated CCI group were not significantly different 

than thresholds recorded from the vehicle-treated CCI group [F(3,4) = 0.69, p = 0.60]. 
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Figure 31. NS1738 did not attenuate chronic constriction injury (CCI)-induced thermal 
hyperalgesia.  
Ten days after chronic constriction injury, mice were pretreated with NS1738, and then tested 15 
min later in the Hargreaves plantar stimulator test. NS1738 (30mg/kg, i.p.) did not attenuate 
CCI-induced hyperalgesia. Data from paws ipsilateral to nerve injury are shown. Sham group did 
not differ between drug treatment (data not shown).  *, p < 0.05 when compared to mice that had 
a right sciatic nerve constriction injury and were administered i.p. vehicle. N= six mice per 
group. Data are expressed as means ± S.E.M.  
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4.3.4 Effects of PNU-120596 on thermal hyperalgesia in the CCI Mice  

As shown in Figure 32A, PNU-120596 did not produce significant [F(3,20) = 0.84, p = 

0.49] differences in thermal sensitivity in control mice. The effects of PNU-120596 (1, 2 and 4 

mg/kg, i.p.) on the thermal sensitivity in sham mice group were measured 3 h after injection. In 

contrast, PNU-120596 dose-dependently reversed thermal hyperalgesia as shown in Figure 32B. 

These anti-hyperalgesic effects were seen at 15 min [F(3,20) = 9.78, p < 0.001], 3 h [F(3,20) = 8.28, 

p < 0.001] and 6 h [F(3,20) = 5.13, p < 0.01], but disappeared 24 h after PNU-120596 

administration [t(10) = 0.11, p = 0.92].  

 To determine whether the anti-hyperalgesic effects of PNU-120596 were dependent on 

α7 nAChRs, mice were administered MLA (10mg/kg, s.c.), an α7 nAChRs antagonist, 10 min 

before PNU-120596 and thermal hyperalgesia was measured 15 min after PNU-120596 (4mg/kg, 

i.p.) administration. As shown in Figure 32C, MLA significantly blocked the anti-hyperalgesic 

effect of PNU-120596 [F(2,10) = 13.35, p < 0.01]. 
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Figure 32. The anti-hyperalgesic effects of PNU-120596 in CCI-induced thermal 
hyperalgesia is α7 nAChR-mediated.  
Mice were subjected to CCI and tested for thermal hyperalgesia. Mice were treated with PNU-
120596 (1, 2 and 4 mg/kg, i.p.) and thermal hyperalgesia was measured at 15 min, 3, 6 and 24 h 
post-treatment with PNU-120596. (A) Sham group did not differ between drug treatment. (B) 
PNU-120596 reduced the intensity of thermal hyperalgesia in a dose- and time-releated manner. 
(C) MLA, the α7 nAChR antagonist completely blocked the anti-hyperalgesic effects of PNU-
120506. Data from paws ipsilateral to nerve injury are shown. *, p < 0.05 when compared to 
mice that had a right sciatic nerve constriction injury and were administered i.p. vehicle. N= six 
mice per group. Data are expressed as means ± S.E.M.  
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4.3.5 Effects of NS1738 and PNU-120596 on Mechanical Allodynia in CCI Mice 

Fifteen days after the CCI surgery, mice were given an i.p. injection  of NS1738, PNU-

120596, or vehicle. In mice that received vehicle or NS1738, ipsilateral paws displayed 

significantly lower thresholds than contralateral paws after 15 min [t(10) = 4.19, p < 0.01], 3 h 

[t(10) = 4.34, p < 0.01] and 6 h [t(10) = 4.90, p < 0.001] as shown in Figure 33A. NS1738 (30mg/kg 

i.p.) treatment did not significantly reverse mechanical allodynia thresholds produced by a 

vehicle (i.p.) treatment at 15 min [t(10) = 1.76, p = 0.11], 3 h [t(10) = 1.33, p = 0.21], or 6 h [t(10) = 

2.21, p = 0.05] (Figure 33A).  In mice that received vehicle or PNU-120596, ipsilateral paws 

displayed significantly lower thresholds than contralateral paws after at 15 min [t(8) = 5.84, p < 

0.001], 3 h [t(8) = 6.03, p < 0.001] and 6 h [t(8) = 6.05, p < 0.001] as shown (Figure 33B). In 

contrast to NS1738, i.p. PNU-120596 dose-dependently produced significant anti-allodynic 

effects [F(3,17) = 6.15, p < 0.01], compared to those produced by an i.p. vehicle treatment, when 

tested 15 min post-treatment (Figure 33B). The anti-allodynic effects of PNU-120596 (4 mg/kg) 

persisted for 3 h but no longer significantly differed from vehicle at 6h [F(3,17) = 3.20, p = 0.05] 

(Figure 33B).  Thresholds produced by PNU-120596-treated mice in the sham group (the 

control) did not differ from those produced by vehicle-treated mice (data not shown). 
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Figure 33. CCI-induced mechanical allodynia was attenuated by PNU-120596 at higher 
doses and at times closer to treatment, but not by NS1738 at any dose or time.  
Two groups of CCI mice, one pretreated with NS1738 or vehicle and one pretreated with PNU-
120596 or vehicle, were tested at 15 min, 3 h, and 6 h after treatment in the mechanical allodynia 
test. (A) NS1738 (30mg/kg, i.p.) did not attenuate CCI-induced allodynia at 15 min, 3 h, or 6 h, 
and allodynia thresholds were significantly different in ipsilateral paws (with CCI) than 
contralateral paws (without CCI). (B) PNU-120596 significantly attenuated CCI-induced 
allodynia at 4mg/kg and 8mg/kg, but not 1 mg/kg, 15 min after treatment, at only 4mg/kg at 3 h 
after treatment, and not at all at 6 h after treatment. PNU-120596 was given i.p to animals and 30 
min later; their withdrawal thresholds (g) were measured. Mechanical sensitivity in sham mice 
did not differ between drug treatments (data not shown). Each point represents the mean ± SE of 
6 mice. Data are presented as means ± S.E.M. of paw withdrawal thresholds. *, p < 0.05 vs. 
vehicle contralateral (without CCI) paw ; #, p < 0.05 vs. ipsilateral  (CCI surgery) paw 
withdrawal thresholds. N= six mice per group.  
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4.3.6 Effects of the Interaction Between PNU-120596 and PHA-543613 on Mechanical 

Allodynia in CCI Mice 

 We next tested whether combination of PHA-543613 (2mg/kg s.c.), a selective α7 

agonist, and PNU-120596 (1mg/kg i.p.) would produced enhanced anti-allodynic effects in the 

CCI model. As depicted, Figure 34 shows thresholds from mice administered both PNU-120596 

(1mg/kg, i.p.) and PHA-543613 (2mg/kg) or each compound alone. Low dose of PNU-120596 or 

PHA-543613 did not significantly block mechanical allodynia at any time point. However, the 

co-administration of these subthreshold doses of PNU-120596 and PHA-543613 significantly 

reversed mechanical allodynia at 3 h post-treatment compared to the administration of vehicle 

then vehicle [t(8) = 2.72, p < 0.05]. However, no significant anti-allodynic effects were found at 

30 min [t(8) = 1.57, p = 0.16] or 6 h [t(8) = 0.91, p = 0.39] post-treatment (Figure 34).  
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Figure 34. CCI-induced mechanical allodynia was attenuated 6 h after a PNU-120596, then 
a PHA-543613, pretreatment (all second treatments were administered 15 min after the 
first treatment; post-treatment time began after the first treatment).  
Four groups of CCI mice, one pretreated with vehicle (i.p.) then vehicle, one PNU-120596 
(1mg/kg, i.p.) then vehicle, one vehicle then PHA-543613 (2mg/kg, s.c.), and one PNU-120596 
then PHA-543613 (at the same doses as separately) were tested at 30 min, 3 h, and 6 h after 
treatment in the mechanical allodynia test. Neither PNU-120596 nor PHA-543613 attenuated 
CCI-induced allodynia at 30 min, 3 h, or 6 h; allodynia thresholds were significantly different in 
ipsilateral paws (with CCI) than contralateral paws (without CCI).  PNU-120596 pretreatment 
before PHA-543613 administration significantly attenuated CCI-induced allodynia at the same 
doses mentioned before at 3 h, but not at 30 min or 6 h, post-treatment. Data are presented as 
means ± S.E.M. of paw withdrawal thresholds. *, p < 0.05 vs. vehicle contralateral (without CCI) 
paw ; #, p < 0.05 vs. ipsilateral  (CCI surgery) paw withdrawal thresholds. N= 6 mice per group. 
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4.3.7 Effects of NS1738 and PNU-120596 on Locomotor Activity of Mice 

 In order to infer whether motor impairment may have contributed to the effects of 

NS1738 and PNU-120596 in von Frey and Hargreaves tests, we evaluated NS1738 and PNU-

120596 on spontaneous activity in mice.  As seen in Figure 35, mice treated with an active dose 

of NS1738 (30mg/kg, i.p.) or PNU-120596 (8 mg/kg, i.p.) did not show significant changes in 

locomotor activity (locomotor test) [F(2,10) = 2.91, p = 0.10] 15 min after injection.  
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Figure 35. Effects of NS1738 and PNU-120596 on locomotor activity of mice. 
Animals were tested 15 min after injection of vehicle, NS1738 (30mg/kg, i.p.) or PNU-120596 
(8mg/kg, i.p.) and their locomotor activity were measured for 30 min.  Each point represents 6-8 
animals per group.  
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4.4 Summary of Chapter IV Results  

In the carrageenan inflammatory mouse model, we showed that both NS1738 and PNU-

120596 blocked the development of thermal hyperalgesic responses, though only PNU-120596 

reduced paw edema. These effects were blocked by MLA, suggesting that PNU-120596 reduced 

carrageenan-induced thermal hyperalgesia and paw edema was α7 receptor-mediated. 

Furthermore, PNU-120596 was found to reverse carrageenan-induced thermal hyperalgesia and 

attenuate carrageenan-induced paw edema after thermal hyperalgesia was established.  

            In the CCI model, NS1738 did not attenuate thermal hyperalgesia. In sham mice, PNU-

120596 produced significant differences in neither thermal sensitivity nor mechanical allodynia. 

However, it did dose-dependently reverse thermal hyperalgesia lasting up to 24 h. Additionally, 

PNU-120596’s antihyperalgesic effects were antagonized by MLA, suggesting that PNU-

120596’s effect in the CCI model was α7 receptor-mediated. Furthermore, PNU-120596 dose-

dependently produced anti-allodynic effects in a time-related manner. Indeed, PNU-120596 

enhanced PHA-543613’s anti-allodynic effect in the CCI model. Finally, as shown in Figure 35, 

neither NS1738 nor PNU-120596 at antinociceptive doses in the carrageenan and CCI altered 

locomotor activity in mice. 
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CHAPTER V 

 

5.1 General Discussion 

 In the present project, we evaluated the antinociceptive activity of α7 nAChRs PAMs in 

mouse models of acute, tonic, inflammatory and chronic neuropathic pain behavior.  Our results 

show that, similar to α7 agonists, α7 PAMs are not active in acute thermal pain tests (hot-plate 

and tail-flick) and mechanical sensitivity tests, after systemic administration.  The lack of effect 

of these α7 direct and indirect agonists suggests that α7 nAChRs do not play an important role in 

acute thermal and mechanical pain modulation.  

Another model that we tested was inflammatory tonic pain via the formalin test, which 

consists of two distinct phases. The first phase (immediately after formalin injection), seems to 

be caused by the direct effect of formalin on sensory C-fibers.  The second phase (starting later 

after formalin injection), known as the inflammatory phase, is associated with the development 

of a delayed inflammatory response and spinal dorsal horn sensitization (Abbott et al., 1995; 

Davidson and Carlton, 1998). Earlier studies have shown that opioids, which are centrally-acting 

drugs, inhibit both phases of the formalin test, while peripherally-acting drugs, such as NSAIDs 

and corticosteroids, only inhibit the late phase (Shibata et al., 1989). 

Of the two types of α7 PAMs (type I and type II) that we tested, only the type II α7 PAM 

(PNU-120596) attenuated pain behavior in the early and late phases of the formalin test.  Indeed, 

PNU-120596 had a long-lasting antinociceptive effect with a greater potency (6-fold) in the late 

(inflammatory) phase of the test. In contrast, the type I α7 PAM (NS1738) failed to exhibit 

antinociceptive effects in the formalin test after systemic (i.p.) and central (i.t.) administration.  

The lack of effect after NS1738 administration is probably not due to a poor drug distribution to 
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the brain after systemic injection, since we find NS1738 in the brain after systemic 

administration. This is also supported by reports that brain concentrations of NS1738 after i.p. 

injection (30 mg/kg) yields drug levels to be ~0.80 µM, close to those reported to enhance ACh 

in expressed α7 nAChRs (Timmermann et al., 2007).  In addition, the concentration of NS1738 

in the mouse brain is similar to that seen in the rats after i.p. injection of the same dose of the 

drug (Timmermann et al., 2007).  Similarly, PNU-120596 brain levels of ~0.25 µM, after a dose 

of 1 mg/kg i.p., fall near the EC50 for potentiating effects of PNU-120596 (EC50 ~ 0.2-1.5 µM) 

found in various native and expressed α7 nAChRs preparations (Kalappa et al, 2010; Gronlien et 

al., 2007; Hurst et al., 2005; Barron et al., 2009; Gusev and Uteshev, 2010).  Our data therefore 

strongly suggest that, because they are present in the brain at different concentrations after i.p. 

administration type I and II α7 nAChR PAMs modulate nociceptive behavior in the formalin test 

through different mechanisms.   

The long-acting effect of PNU-120596 in the formalin test cannot be simply explained by 

the pharmacokinetic profile of the drug.  Indeed as shown in Figure 18, most of the PNU-120596 

is eliminated from plasma and brain of the animals 4 hr after injection of the drug.  These 

findings indicate discordance between the pharmacokinetic-pharmacodynamic (Figure 18D) 

properties of PNU-120596 that may point to a key mechanistic feature of the antinociceptive 

efficacy associated with α7 nAChRs positive allosteric modulation.  In this regard, PNU-

120596’s properties are similar to those reported with α7 nAChR agonists such as ABT-107 

(Bitner et al., 2010).  PNU-120596 appears to offer prolonged efficacy that may be associated 

with the activation of signaling pathways leading to lasting secondary functional changes linked 

to synaptic plasticity.  Our results with the MEK inhibitor U-0126 blocking the antinociceptive 

effect of PNU-120596 suggest that one possible post-receptor signaling mechanism may work 
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through the extracellular-signal-regulated kinases 1 and 2 (ERK1/2).  The ERK1/2 pathway 

regulates a diverse array of cellular functions, such as cell growth, differentiation and survival 

that may underlie the synaptic plasticity required for persistent pain processes (Alter et al., 

2010).  Furthermore, El Kouhen et al. (2009), observed a robust increase in ERK1/2 

phosphorylation induced by α7 agonists in the presence of type II PAM in PC12 cells.  

In contrast to the type II α7 PAM, the selective α7 agonist PHA-543613 had a very 

narrow window of antinociceptive effect, as shown by its U-shaped dose-effect curve in the 

formalin test.  While drug distribution and metabolism factors could account for the different 

dose-response profiles of PHA-543613 and PNU-120596, differences in α7 nAChRs activation 

and desensitization properties may play a more important role.  Like other α7 agonists, PHA-

543613, induces receptor desensitization after an initial phase of receptor activation. 

Furthermore, tolerance did not develop following chronic exposure of the type II α7 PAM.  

Importantly, no changes were seen in body weight gain after chronic administration of PNU-

120596 in mice. 

In our studies, MLA, an α7 antagonist, but not DHBE, a β2* antagonist, significantly 

blocked PNU-120596’s antinociceptive effect in the early and late phases of the formalin test. 

This confirms the specificity of PNU-120596 to the α7 subtype of nAChRs. Using both 

pharmacological (i.e. naloxone) and genetic approaches (i.e. α7 KO mice) we additionally 

confirm that PNU-120596’s effect is mediated by α7 nAChRs and not by opioid receptors.  

Likewise, our data in phase II of the formalin test show a blockade of PNU-120596’s 

effect by NS1738, supporting the idea that type II and I may compete for a common allosteric 

transmembrane site of the α7 nAChRs.  Supporting this allegation, Collins et al. (2011) recently 
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showed that both type I PAM NS1738 and type II PAM PNU-120596 bind competitively at a 

shared or overlapping allosteric transmembrane site on the α7 nAChR.  

We observed that PNU-120596 attenuated pain behavior in the early and late phases of 

the formalin test, suggesting that PNU-120596 acts both centrally and peripherally to reduce 

tonic pain. It seems that multiple sites are involved in PNU-120596’s antinociceptive effect. 

Indeed, the data with i.t. and i.pl. MLA provides evidence of both central and peripheral 

involvement, respectively, of PNU-120596 in the formalin test. For example, spinally-

administered MLA blocked the antinociceptive effects of systemic PNU-120596. Additionally, 

significant antinociceptive activity after i.t. injection of the drug itself was observed.  These 

results support the possibility that the spinal cord is an important site of action for PNU-

120696’s effects in the formalin test.  

Additionally, i.pl. MLA pretreatment blocked the antinociceptive effects of i.p. PNU-

120596, further implicating a role for local α7 nAChRs.  In the periphery, α7-nAChRs are 

expressed on T cells, macrophages and other immune cells, which are capable of producing ACh 

(Fujii et al., 2008; Kawashima and Fujii, 2003).  The peripheral efficacy of α7 PNU-120596 in 

the setting of inflammation could be a result of a modulation of the release of cytokines by local 

macrophages. Indeed, an earlier study showed that α7* nAChR expression on macrophages is an 

essential mediator of inflammation (Wang et al., 2003). Additionally, in the rat hindpaw, α7 

nAChRs have been identified on skin keratinocytes and resident macrophages, but not on 

peripheral nerve endings (Kurzon et al., 2007).  

 Subsequently, we evaluated the interaction between the α7 type II PAM PNU-120596 

and various nicotinic agonists in a persistent pain model. For that, we examined the interaction of 
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choline, an endogenous α7 nAChR agonist, with PNU-120596 in the formalin model. Using an 

isobolographic analysis, we were able to show synergism between PNU-120596 and choline, 

demonstrating that PNU-120596 enhances choline’s antinociceptive effect in this model.  In an 

attempt to extrapolate these findings to other α7 nAChR agonists, we tested and supported the 

hypothesis that PNU-120596 enhances the effects of a selective α7 agonist PHA-543613 and 

nicotine in the formalin test.  In contrast, PNU-120596 did not alter the effect of morphine in 

either phase of the formalin test, implying that opioid receptors were not involved in PNU-

120596’s enhancement effect in this test.  

Generally speaking, PAMs are compounds that facilitate endogenous neurotransmission 

and/or enhance the efficacy and potency of agonists without directly stimulating the agonist 

binding sites (Maelicke & Albuquerque, 2000; Albuquerque et al., 2001). This relies on the fact 

that the effects of PAMs manifest, in principle, only when receptors are activated by the 

endogenous ligand ACh. The fact that the administration of PNU-120596 on its own produced an 

antinociceptive response, suggests the presence of a pro-antinociceptive endogenous tone 

mediated by α7 nAChRs.  Both choline and acetylcholine are possible candidates for PNU-

120696’s effects. It has been shown that PAMs of the α7 nAChR act by enhancing the actions of 

the neurotransmitter ACh (Bertrand and Gopalakrishnan, 2007). However, the rapid clearance of 

ACh by acetylcholinesterases in the synaptic cleft makes it unlikely that ACh neutransmission 

alone is enhanced by PNU-120696 and suggests that endogenous choline in the CNS may play a 

bigger role. In addition, our data showing the ability of systemic PNU-120696 to enhance spinal 

choline’s antinociception in the formalin test reinforces this claim.  Still, the relative contribution 

of choline and ACh in PNU-120696’s effects at peripheral sites (immune cells for example) is 

not clear.  
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The isobolographic analysis indicated a supra-additive antinociceptive interaction 

between PNU-120596 and choline.  Indeed, as shown in our results, the experimental ED50 is 

located below the additive dose line, indicating that their interaction produces synergistic 

antinociceptive effect in the formalin test.  While our results show that exogenous choline 

administration in the formalin test produces notable in vivo antinociceptive effects, endogenous 

choline is present in the CSF at a much lower concentration (∼10 µM) relative to its potency 

(EC50 ∼ 0.5-1.5mM) as α7 agonist (Alkondon et al., 1997; Papke and Porter, 2002). Hence, 

endogenous choline may not be effective in activating native α7* nAChRs in the absence of a 

PAM because of choline’s low potency and thus narrow therapeutic significance. This notion is 

consistent with the reported absence of cholinergic synaptic inputs, the absence of exogenous 

nicotinic agonists, and the findings that innate α7* nAChRs are not actively sustained or 

desensitized by the low physiological concentrations of choline (Uteshev et al., 2003). However, 

recently, Kalappa et al., (2010) and Gusev and Uteshev (2010) showed that, in the presence of 

PNU-120596, physiological concentrations of choline become effective in the activation of 

native functional α7* nAChRs in hippocampal CA1 pyramidal neurons.  Interestingly, numerous 

studies have shown that exogenous choline’s antinociceptive effect involves modulation of α7 

nAChRs in a variety of pain models (Damaj et al., 2000; Wang et al., 2005; Hamurtekin and 

Gurun, 2006).  

Our results with the α7 nAChR PAM are in line with recently reported α4β2 PAM 

results.  NS-9283, an α4β2 selective PAM enhanced the effects of an α4β2 agonist (ABT-594) 

in rodent inflammatory and chronic neuropathic pain models without exacerbating the agonists’ 

side effects, such as nausea and emesis (Zhu et al., 2011; Lee et al., 2011).  It is important to note 

that in contrast to PNU-120596, the α4β2 PAM failed to produce an antinociceptive in these 
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models on its own.  These differences suggest that in contrast to α7 nAChRs, tonic endogenous 

anti-inflammatory and antinociceptive mechanisms mediated by α4β2* nAChRs are not evident. 

Additionally, the way that PNU-120596 modulates the α7 nAChRs may play a key role in 

explaining PNU-120596’s antinociceptive effects. As mentioned earlier, PNU-120596 slows 

additional desensitization of the α7 nAChRs (Gronlien et al., 2007), therefore, PNU-120596 may 

have greater effect on α7 nAChRs activation and desensitization than the α4β2 nAChR PAM 

(NS-9283) has on α4β2 nAChRs. 

PNU-120596 failed to alter nicotine-induced seizures, -decrease in motor activity and -

antinociception in acute thermal pain tests. Surprisingly, PNU-120596 did significantly enhance 

nicotine-induced hypothermia via α7 nAChRs. Since PNU-120596 enhanced the antinociceptive 

effects of nicotine in the tonic pain model, we subsequently evaluated the interaction between 

PNU-120596 and nicotine in thermal acute pain models (tail-flick and hot-plate tests). 

Surprisingly, PNU-120596 did not enhance or block nicotine’s effect in both tests. There are 

several factors that may account for this variability, such as differences between the nociceptive 

response of the acute thermal pain models, which is based on a short, high intensity stimulus 

generating a brief pain, and the nociceptive responses of chronic pain models, such as the 

formalin test, which involves a continued pain generated by injured tissue caused by the i.pl. 

injection of formalin (Tjolsen et al., 1992). Thus, PNU-120596’s modulation of nociception may 

differ for pain elicited by short- than for pain elicited by long-lasting stimuli.  

Furthermore, PNU-120596 produced a greater antinociceptive response in the late phase, 

which seems to be related to the inflammatory response elicited by formalin (Hunskaar and Hole, 

1987), then in the early phase of the formalin test, suggesting that PNU-120596’s antinociceptive 
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effects might suppress monocyte/macrophage release of inflammatory cytokines. This supports 

the assertion of α7 nAChR’s role in the cholinergic anti-inflammatory pathway, in which α7 

nAChRs have been shown to be located on macrophages (Tracy, 2002, Wang et al., 2003, Ulloa, 

2005 and de Jonge and Ulloa, 2007), lymphocytes (De Rosa et al., 2009) as well as glial cells 

(microglia, astrocytes) (Wang et al., 2007). PNU-120596’s modulation of this α7 nAChR 

through ACh and/or choline, along with prolonged receptor desensitization associated with a 

high calcium influx, may stop nuclear factor κΒ (NF- kB) stimulation (Tracey et al., 2005; 

Babaev et al., 2000). 

The fact that PNU-120596 enhanced nicotine’s effects in the formalin test lead us to 

evaluate if it would potentiate other nicotinic responses, in particular those associated with CNS-

related adverse effects such changes in locomotor activity and body temperature and seizure 

induction in mice.  Our results show PNU-120596 at 8 mg/kg did not significantly alter nicotine-

induced locomotor depression dose-response curve.  In addition, administration of PNU-120596 

(8 mg/kg) did not enhance nicotine-induced seizures, a response partially mediated by α7 

nAChRs (Damaj et al., 1999; Tritto et al., 2003; Stitzel et al., 1998; 2000).  It is possible that 

mediation of seizure sensitivity is more closely related to a direct activation of α7 nAChRs rather 

than an indirect one, as is the case with allosteric modulation.  On its own, PNU-120596 (8 

mg/kg) failed neither to either alters locomotor activity of mice nor to induce seizures or 

convulsions in these animals after i.p. injection.  

Interestingly, PNU-120596 dose-dependently enhanced hypothermia induced by the 

lowest dose (0.5mg/kg) of nicotine.  This enhancement disappeared at higher doses of the drug. 

The α7 antagonist MLA blocked PNU-120596’s enhancement of nicotine-induced hypothermia 
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suggesting the plausible involvement of α7 nAChRs.  In addition, in the presence of PNU-

120596 mice were more sensitive to α7 agonist PHA-543613’s (8 mg/kg) effects on body 

temperature.  On its own, PHA-543613 (8 mg/kg) did not induce a decrease of body temperature 

of the animals.  These findings were surprising since nicotine-induced hypothermia is mediated 

by β2-, β4-, α4-, α5- but not α7-containing nAChRs (Tapper et al., 2007; Tritto et al. 2004; Sack 

et al., 2005; Jackson et al., 2010; Ortiz et al., 2012).  The enhancement of nicotine’s hypothermic 

effects seems to require positive allosteric modulation, since the α7 direct agonist PHA-543613, 

failed to alter this nicotinic response.  Potentiation of nicotine’s effects might therefore be the 

result a higher calcium influx due to prolonging receptor activation by PNU-120596.  Higher 

calcium influx has been demonstrated to induce hypothermia in murine hippocampal neurons 

(Warren et al., 2012).  However, mechanisms behind PNU-120596 and nicotine interaction on 

body temperature are not clear.  It has been suggested that nicotine produces hypothermia by 

interacting with presynaptic nicotinic receptors to release acetylcholine, which acts on 

muscarinic receptors (Gordon, 1994; Overstreet et al., 1998).  Furthermore, dopaminergic and 

opiates mechanisms were reported to mediate nicotine’s effects on the body temperature 

(Zarrindast and Tabatabai, 1992; Zarrindast and Abolfathi-Araghi, 1992; Sakoori and Murphy, 

2009). 

 Lastly, we examined the anti-hyperalgesic and anti-allodynic effects of NS1738 and 

PNU-120596 in murine inflammatory and chronic neuropathic pain models after acute 

administration. Overall, our results showed that while NS1738 and PNU-120596 both attenuated 

hyperalgesia associated with inflammation, only PNU-120596 decreased hyperalgesia and 

allodynia in the chronic neuropathic pain model. Whereas PNU-120596 produced consistent 

effects in carrageenan and CCI models, there was a surprising disparity of the effects of NS1738 
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on hyperalgesia and edema. In addition, the effects of PNU-120596 were blocked by MLA, 

suggesting that α7 nAChRs play a critical role in its action.  Importantly, the antinocieptive 

effects of both drugs occurred at doses that had no effect on motor function and coordination in 

mice. 

The difference in efficacy between PNU-120596 and NS1738 in the inflammatory, tonic 

and neuropathic pain models might be related to differences in α7 nAChR regulation by these 

two drugs.  Type I PAMs predominantly affect the apparent peak current with little effect on 

desensitization kinetics, whereas type II PAMs increase the apparent peak current and evoke a 

distinct weakly decaying current causing dramatic slowing of receptor desensitization (Hurst et 

al., 2005).  Indeed, PNU-120596 was shown to activate α7 nAChRs that would otherwise be 

desensitized (Papke et al., 2009).  This difference in efficacy between NS1738 and PNU-120596 

in our pain models was unexpected since both were previously reported to produce pro-cognitive 

effects in mice and rats (Hurst et al, 2005; Ng et al., 2007 and Thomsen et al., 2010).  

PNU-120596’s anti-inflammatory activity may also be explained by the inhibition of NF-

kB, which induces macrophage activation and pro-inflammatory cytokine production (Lee et al., 

1994; Baeuerle & Henkel, 1994). Support for this mechanism lays in the fact that NF-kB has 

been shown to reliably occur after carrageenan-induced paw edema and has been associated with 

nicotine’s anti-inflammatory action (Bhattacharyya et al., 2008; Borthakur et al., 2007; 

Menegazzi et al., 2008; Min et al., 2009; Wang et al., 2004). It will be important in future studies 

to compare the effects of PNU-120596 and NS1738 in affecting the NF-kB pathway and pro-

inflammatory cytokine production. 
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Moreover, PNU-120596 significantly reduced carrageenan-induced paw edema and 

thermal hyperalgesia after onset.  This reversal of nociceptive and edematous responses has 

potential clinical significance, because anti-inflammatory drugs are typically given to patients 

after the onset of inflammation. Two explanations may account for PNU-120596’s effects. First, 

PNU-120596, coupled to endogenous agonists, could be activating α7 nAChRs, opening 

channels, and enhancing Ca2+ influx, therefore magnifying downstream effects. Although it has 

been reported that Ca2+ influx through a nAChR channel itself seems to contribute very little to 

the cytosolic concentration of calcium (Zhou and Neher, 1993), other studies report that Ca2+ 

permeability through α7 nAChRs is important in cellular processes (Seguela et al., 1993). A 

recent study showed that α7 nAChR-mediated calcium signaling and catecholamine release in 

bovine chromaffin cells requires PNU-120596 (del Barrio et al., 2010). There is also evidence 

for α7 nAChRs-mediated noradrenaline release (Rowley and Flood, 2008) in the lumbar spinal 

cord as well as serotonin release (Cordero- Erausquin & Changeux, 2001). Second, PNU-

120596, in the presence of endogenous ACh and choline, may activate α7 nAChRs expressed in 

the nociceptive system and on macrophages, consequently inhibiting TNF-α synthesis (Bernik et 

al., 2002). 

In addition to differences between the effects of NS1738 and PNU-120596 in the 

formalin and carrageenan inflammatory pain models, both drugs produced differential effects in 

the chronic neuropathic pain (CCI) model.  While NS1738 (30mg/kg) was inactive in this model, 

PNU-120596 dose-dependently reduced thermal hyperalgesia and mechanical allodynia via α7 

nAChRs.  Furthermore, PNU-120596 had no antinociceptive effect in contralateral paws (data 

not shown) or in sham-operated mice, indicating that it was antinociceptive under pain 

conditions, only.  Considering NS1738’s lack of effect in the CCI model, poor blood-brain 
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barrier permeability is improbable, since previous studies have shown that NS1738 was present 

at high enough concentrations in the brain after i.p. administration (Timmermann et al., 2007). 

Another possibility is receptor desensitization and α7 nAChR regulation, as discussed earlier 

with the carrageenan model (Hurst et al., 2005; Papke et al., 2009). Moreover, inflammatory and 

neuropathic pain might have different pathomechanistic components (Walker et al., 1999), thus 

explaining NS1738’s different effects in carrageenan-induced and CCI-induced pain models. 

As α7 PAMs presumably have the capability of enhancing α7 agonist response (Gronlien 

et al., 2007; Hurst et al., 2005), we investigated the interaction between PNU-120596 and the 

selective α7 agonist PHA-543613. As predicted, the combination of PNU-120596 and PHA-

543613 produced enhanced anti-allodynic effects in the CCI model compared to the effects of 

each drug given alone. Therefore, these results suggest that PNU-120596 potentiates both 

endogenous cholinergic tone and the effect of exogenous α7 agonist PHA-543613. 

α7 nAChR-dependent neuroinflammatory processes may also be involved in the 

neuroprotective effects of α7 PAMs in neuropathic pain. This hypothesis is supported by α7 

nAChR expression in anti-neuroinflammatory peripheral macrophages and murine microglia 

(Wang and Wang, 2003; Shytle et al., 2004; De Simone et al., 2005). A recent study showed that 

selective α7 nAChR agonist PNU-282987 could reduce hyperalgesia, edema and macrophagic 

infiltration in the sciatic nerve.  

The exact mechanisms involved in the antinociceptive effects of PNU-120596 in the 

chronic pain models are currently unknown.  Previous work has related CCI-induced neuropathic 

pain and DRG α7 nAChR up-regulation (Carnevale et al., 2007; Feuerbach et al., 2009; Fucile et 

al., 2005; Xiao et al., 2002). Thus, PNU-120596 could be enhancing endogenous cholinergic 
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tone through α7 nAChRs in DRG neurons, reducing pain-related behaviors. PNU-120596 could 

also be acting through spinal α7 nAChRs (Genzen & McGehee, 2005), though other reports 

claim that central α7 nAChRs are not involved in thermal and mechanical nociceptive 

hypersensitivity in mice (Gao et al., 2010; Rashid et al., 2006). The discrepancies found in α7 

nAChR involvement in thermal nociceptive mediation may be due to the differential modulation 

of synapses and nociceptive properties, such as pain intensity, in various pathways (Martin et al., 

1999; Millan, 2002; Yoshimura & Furue, 2006; Gao et al., 2010) and variation in methodology 

(ex. testing apparatus).  Furthermore, PNU-120596 may indirectly, through excitatory neurons, 

or directly, through inhibitory neurons, modulate inhibitory neurotransmitter, such as serotonin, 

release.  Cordero-Erausquin and Changeux (2001) have shown that ACh from excitatory neurons 

may tonically activate inhibitory interneuron nAChRs, possibly allowing PNU-120596 to 

enhance α7 nAChR activation and indirectly activate inhibitory neurons.  Aznar et al. (2005) 

even argues that α7 nAChR activation directly effects inhibitory neuronal behavior; they suggest 

that α7 nAChRs are present on inhibitory serotonin-releasing neurons that project to the 

hippocampus and the septum.  

In summary, our results demonstrate for the first time that type I and II α7 PAMs 

differentially potentiate agonist activation of α7 nAChR in tonic, inflammatory and chronic 

neuropathic pain models in vivo. PNU-120596, but not NS1738, plays an important role in 

regulating pain-stimulated behavior in the formalin test and CCI model. The antinociceptive 

effects of PNU-120596 in the formalin test involve the activation of both central and peripheral 

α7 nAChRs. Additionally, the interaction between PNU-120596 and choline has a synergistic 

antinociceptive effect in the formalin test. Lastly, we show that α7 nAChR PAMs have anti-

hyperalgesic and anti-allodynic properties in inflammatory and chronic neuropathic pain models. 
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Previous studies have compared behavioral responses after the administration of type I and II 

PAMs across different models of disorder, including neurodegeneration and cognitive deficits in 

learning, memory, attention; they have shown that these PAMs enhance agonist response and 

improve memory and cognition in rodents (Hogg & Bertrand, 2004; Thomsen et al., 2011; Hurst 

et al., 2005; Ng et al., 2007). Similarly, our study compared type I and II PAMs in inflammatory 

and chronic neuropathic pain models. Our results suggest that NS1738 and PNU-120596 

differentially modulate endogenous cholinergic tone in these models, supporting findings by 

Thomsen et al. (2010) that NS1738 and PNU-120596 differently modulate agonist-induced 

upregulation of α7 nAChR. Though PAMs are currently being developed for the treatment of 

cognitive deficits in patients with schizophrenia or Alzheimer’s disease (Thomsen et al., 2010), 

we demonstrate that type II α7 nAChR PAMs may be potential candidates for the management 

of inflammatory and chronic neuropathic pain.  

5.2 Significance of Findings   

Whereas efficacious treatment of chronic pain requires a multidisciplinary approach (Flor 

et al., 1992), pharmacotherapy plays a central role. A host of pharmacological treatments have 

been successful in managing pain to improve daily function of the individual, including opioids, 

anti-inflammatory steroids, NSAIDs, COX-2 inhibitors, antimigraines, anticonvulsants and 

antidepressants. While these pharmacological treatments are beneficial across a wide range of 

conditions, they are not uniformly effective, and undesired side effects frequently limit their use. 

Therefore, to date, pain, especially chronic pain, remains a prevalent therapeutic challenge. The 

increasingly understood role of the α7 nAChR in pain and inflammation has recently established 

this subtype as a potential target.  
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Since PNU-120596 produced antinociceptive effects in the mouse models of 

inflammatory and chronic neuropathic pain, type II PAMs may be considered viable candidates 

for the development as analgesics. Though our results are not conclusive, genetic homology 

between mice and humans suggest that our findings may be translational. Genomic analyses 

between humans and mice have indicated an 85% homology between complete genomes (Rogers 

et al., 2007) and a 94% homology between the mouse and the human α7 nAChR (BLAST 

search: www.blast.ncbi.nlm.nih.gov.proxy.library.vcu.edu/Blast.cgi). Furthermore, in vitro 

functional studies with α7 agonists and antagonists show that human and mouse α7 nAChRs 

have similar pharmacological properties (Papke et al., 2010). Thus, the high structural and 

functional similarities homology of the α7 nAChR in mice and humans supports the translational 

capacity of our studies and shows that the enhancement of α7 nAChR activation by positive 

allosteric modulation is a promising approach for chronic pain treatment.  

Classically, the aim of drug therapy has been to normalize pain sensitivity, such as that 

which contributes to behavioral conditions like allodynia and hyperalgesia, which have been 

induced in preclinical chronic pain models (Negus et al., 2006). Following this aim, our studies 

show that PNU-120596 produced anti-allodynic and anti-hyperalgesic effects. In addition to 

inducing these nociceptive behaviors, pain is known to suppress normally adaptive behaviors, 

such as walking, feeding, social interactions and affective behavior (Ostelo & de Vet, 2005).  

Stevenson et al (2006) compared effects of morphine, a mu opioid analgesic, and 

haloperidol, an antipsychotic dopamine antagonist, in the suppression of feeding (a pain-

suppressed behavior) and abdominal writhing (pain-stimulated behavior) in an acetic acid rodent 

model. Importantly, morphine prevented both of these aspects measured, whereas haloperidol 

was effective only in inhibiting acid-induced writhing. Therefore, pain-related behavior 
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suppression studies are needed to build a stronger bridge between clinical and preclinical 

measures of pain (Negus et al., 2006). The integration of findings from studies of PNU-120596’s 

effectiveness in pain-stimulated behaviors and in pain-suppressed behaviors would institute a 

more relevant and translational profile of PNU-120596 as an analgesic.  

There are two major mechanistic issues in regard to type II PAMs to be considered for 

their development as analgesic drugs. First, these PAMs dramatically prolong the duration of the 

agonist-evoked ions currents because they reduce receptor desensitization. Second, type II PAMs 

also promote the activation of previously desensitized receptors (Gronlien et al., 2007). The 

result is an increase in agonist-evoked intracellular calcium flux (Hurst et al., 2005), which raises 

the possibility of calcium-induced cytotoxicity in various cell types. Thus, several studies tried to 

address this issue. However, there is contradictory evidence about PNU-120596’s in vitro 

cytotoxicity profile. For example, Ng et al (2007) showed that high concentrations of PNU-

120596 are cytotoxic in α7 nAChRs expressed in the SH-SY5Y- cell line. Likewise, Dinklo et al 

(2011) showed that PNU-120596 induced cellular toxicity in the GH4C1 cell line expressing the 

human α7 nAChR. In contrast to these findings, Hu et al (2009) showed that PNU-120596 alone 

or in combination with agonist did not produce cytotoxic effects in PC12 cells and native 

primary cultures of rat cortical neurons. However, to date, there are no in vivo studies of 

neurotoxicity after chronic administration of these type II PAMs. The cause for this 

inconsistency still unclear, thus more studies is needed to evaluate the extent of this possible 

limitation.  

Another possible limitation of our behavioral observations with PNU-120596, where we 

found that it enhanced nicotine-induced hypothermia. These interactions may have some 

implications for smokers and patients under nicotine replacement therapy. However, we are not 
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sure if these effects of PNU-120696 could be replicated by other PAM IIs or even PAM Is. 

Consequently, more studies are required to validate the use of PNU-120596 as an active 

therapeutic agent for chronic pain treatment.   

5.3 Future Directions 

While our results in mouse pain models are encouraging, more behavioral studies are 

needed. The full behavioral and pharmacological effects of PNU-120596 must be further studied. 

The reproducibility of these antinociceptive results in different animal species, such as rats or 

monkeys, would increase the translational value of our results. Additionally, a comprehensive 

study of PNU-120596’s effects on the affective signs of pain could lead to a more translational 

evaluation of PNU-120596 as a potential therapy for chronic pain. For example, studies could be 

conducted to find the effect of PNU-120596 in models that measure pain-suppressed behaviors. 

Understanding the analgesic spectrum and profile of PNU-120596’s effects in other types of pain 

such as cancer or burn pain would also be important to determine.  

Key differences in efficacy between PNU-120596 and NS1738 in pain tests could reveal 

important molecular mechanistic features of these two types of PAMs. For example, previous 

studies have linked α7 with adenosine monophosphate cyclic (cAMP) response element binding 

protein (pCREB) and protein kinase C (PKC), suggesting that PNU-120596’s and NS1738’s 

differences may involve signaling mechanisms such as pCREB and PKC. Additionally, PKC 

sustains nociceptive plasticity in spinal cord dorsal horn, which may play an important role in 

chronic pain.  



www.manaraa.com

	
   147	
  

Furthermore, a better understanding of the anti-inflammatory profile of PNU-120596’s is 

needed. For example, a better grasp of PNU-120596’s effect on mediators of inflammation such 

as TNF – α or other cytokines would be an important step. 

Finally, a more in-depth understanding of the interaction between PNU-120596 and 

nicotine and the mechanisms involved will be required. For example, it will be important to 

determine if other type II PAMs, that are structually different from PNU-120596, would enhance 

nicotine-induced hypothermia.. The interaction of type I PAM with nicotine should also be 

explored. Lastly, it is important to determine if tolerance to the enhancement of nicotine-induced 

hypothermia develops after chronic exposure.  
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